Metal-to-ligand Charge Transfer (metal-to-ligand + charge_transfer)

Distribution by Scientific Domains


Selected Abstracts


Uncommon Solvent Effect in Oxidative Addition of MeI to a New Dinuclear Platinum Complex Containing a Platina(II)cyclopentane Moiety

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 32 2008
S. Jafar Hoseini
Abstract The reaction of the known complex cis,cis -[Me2Pta(,-dppm)(,-SMe2)Ptb,CH2(CH2)2CcH2(Ptb,Cc)] [dppm = bis(diphenylphosphanyl)methane] with phthalazine (NN) proceeded by replacement of the labile bridging SMe2 ligand with the bidentate N-donor ligand NN to give cis,cis -[Me2Pta(,-dppm)(,-NN)Ptb,CH2(CH2)2CcH2(Ptb,Cc)] (1) as a pale red solid in good yield. The complex was fully characterized by multinuclear (1H, 31P, 195Pt) NMR spectroscopy. The subsequent reaction of complex 1 with excess MeI gave the colorless diplatinum(IV) complex [Me3Pta(,-dppm)(,-I)2Ptb{CH2(CH2)2CcH2(Ptb,Cc)}Me], in which the bridging NN ligand is replaced by bridging iodido ligands. The reddish color of complex 1, which is due to a metal-to-ligand charge transfer (MLCT) band in the visible region, was used to monitor its reaction with MeI in the solvents acetone, CH2Cl2, and benzene. The kinetic data revealed that the reactions in nonpolar benzene or slightly polar CH2Cl2 proceeded in two steps, each following a common SN2 mechanism. In the first step, MeI attacked the platina(II)cyclopentane center rather than the dimethylplatinum(II) center, because the first center is more electron-rich than the second center. In the more polar acetone, the reaction proceeded similarly, with the exception that each step was accompanied by a solvolytic reaction, which was suggested to be responsible for the unusually slower reaction rate in acetone than in benzene or CH2Cl2. Consistently, the reaction rate in the highly polar solvent CH3CN was too slow for any meaningful measurement.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


New Ruthenium Complexes Containing Oligoalkylthiophene-Substituted 1,10-Phenanthroline for Nanocrystalline Dye-Sensitized Solar Cells,

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2007
C.-Y. Chen
Abstract Two new ruthenium complexes [Ru(dcbpy)(L)(NCS)2], where dcbpy is 4,4,-dicarboxylic acid-2,2,-bipyridine and L is 3,8-bis(4-octylthiophen-2-yl)-1,10-phenanthroline (CYC-P1) or 3,8-bis(4-octyl-5-(4-octylthiophen-2-yl)thiophen-2-yl)-1,10-phenanthroline (CYC-P2), are synthesized, characterized by physicochemical and semiempirical computational methods, and used as photosensitizers in nanocrystalline dye-sensitized solar cells. It was found that the difference in light-harvesting ability between CYC-P1 and CYC-P2 is associated mainly with the location of the frontier orbitals, in particular the highest occupied molecular orbital (HOMO). Increasing the conjugation length of the ancillary ligand decreases the energy of the metal-to-ligand charge transfer (MLCT) transition, but at the same time reduces the molar absorption coefficient, owing to the HOMO located partially on the ancillary ligand of the ruthenium complex. The incident photon-to-current conversion efficiency curves of the devices are consistent with the MLCT band of the complexes. Therefore, the overall efficiencies of CYC-P1 and CYC-P2 sensitized cells are 6.01 and 3.42,%, respectively, compared to a cis- di(thiocyanato)-bis(2,2,-bipyridyl)-4,4,-dicarboxylate ruthenium(II)-sensitized device, which is 7.70,% using the same device-fabrication process and measuring parameters. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 13 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 8 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 7 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 5 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 4 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 2-3 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


DFT calculations of light-induced excited states and comparison with time-resolved crystallographic results

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2005
Philip Coppens
Abstract DFT calculations of the ground and first excited states of several transition metal complexes have been performed to complement time-resolved diffraction experiments. The results from different functionals and relativistic treatments are tested against both diffraction and spectroscopic values. Calculations of the d8,d8 complex [Pt2(pyrophosphite)4]4, quantitatively reproduce metal,metal shortening on excitation to the triplet state and support bond formation between the two metal centers, as do calculations on [Rh2(1,3-diisocyanopropane)4]2+. Results on homoleptic and heteroleptic copper(I) 2,9-dimethyl,1,10-phenanthroline (dmp) complexes, which are investigated because of their potential for solar energy capture, confirm considerable molecular deformations on excitation. The distortion calculated for the isolated complex [Cu(dmp)(dmpe)]+ (dmpe=1,2-bis(dimethylphosphino)ethane) is significantly larger than observed in the crystal, indicating the constraining effect of the crystalline environment. The change in the net charge of the Cu atom upon photo-induced metal-to-ligand charge transfer is less than 0.2 e, showing the limitations of the formal Cu(I),Cu(II) designation. Electron density difference maps show a pronounced change in electronic structure of the Cu atom on excitation. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Excited-state molecular structures captured by X-ray transient absorption spectroscopy: a decade and beyond

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2010
Lin X. Chen
Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution,solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled. [source]


The Effect of Heavy Atoms on Photoinduced Electron Injection from Nonthermalized and Thermalized Donor States of MII,Polypyridyl (M=Ru/Os) Complexes to Nanoparticulate TiO2 Surfaces: An Ultrafast Time-Resolved Absorption Study

CHEMISTRY - A EUROPEAN JOURNAL, Issue 2 2010
Sandeep Verma
Abstract We have synthesized ruthenium(II), and osmium(II),polypyridyl complexes ([M(bpy)2L]2+, in which M=OsII or RuII, bpy=2,2,-bipyridyl, and L=4-(2,2,-bipyridinyl-4-yl)benzene-1,2-diol) and studied the interfacial electron-transfer process on a TiO2 nanoparticle surface using femtosecond transient-absorption spectroscopy. Ruthenium(II)- and osmium(II)-based dyes have a similar molecular structure; nevertheless, we have observed quite different interfacial electron-transfer dynamics (both forward and backward). In the case of the RuII/TiO2 system, single-exponential electron injection takes place from photoexcited nonthermalized metal-to-ligand charge transfer (MLCT) states. However, in the case of the OsII/TiO2 system, electron injection takes place biexponentially from both nonthermalized and thermalized MLCT states (mainly 3MLCT states). Larger spin,orbit coupling for the heavier transition-metal osmium, relative to that of ruthenium, accounts for the more efficient population of the 3MLCT states in the OsII -based dye during the electron-injection process that yields biexponential dynamics. Our results tend to suggest that appropriately designed OsII,polypyridyl dye can be a better sensitizer molecule relative to its RuII analogue not only due to much broader absorption in the visible region of the solar-emission spectrum, but also on account of slower charge recombination. [source]


Photoreactivity and Photopolymerization of Silicon-Bridged [1]Ferrocenophanes in the Presence of Terpyridine Initiators: Unprecedented Cleavage of Both Iron,Cyclopentadienyl Bonds in the Presence of Chlorosilanes

CHEMISTRY - A EUROPEAN JOURNAL, Issue 31 2007
Yan Chan
Abstract The photopolymerisation of sila[1]ferrocenophane [Fe(,-C5H4)2SiMe2] (3) with 4,4,,4,,-tri- tert -butyl-2,2,:6,,2,,-terpyridine (tBu3terpy) as initiator has been explored. High-molecular-weight polyferrocenylsilane (PFS) [{Fe(,-C5H4)2SiMe2}n] (5) was formed in high yield when a stoichiometric amount of tBu3terpy was used at 5,°C. Photopolymerisation of ferrocenophane 3 at higher temperatures gave PFS 5 in lower yield and with a reduced molecular weight as a result of a slower propagation rate. Remarkably, when Me3SiCl was added as a capping agent before photopolymerisation, subsequent photolysis of the reaction mixture resulted in the unprecedented cleavage of both iron,Cp bonds in ferrocenophane 3: iron(II) complex [Fe(tBu3terpy)2Cl2] (7Cl) was formed and the silane fragment (C5H4SiMe3)2SiMe2 (8) was released. The iron,Cp bond cleavage reaction also proceeded in ambient light, although longer reaction times were required. In addition, the unexpected cleavage chemistry in the presence of Me3SiCl was found to be applicable to other photoactive ferrocenes such as benzoylferrocene. For benzoylferrocene and ferrocenophane 3, the presence of metal-to-ligand charge transfer (MLCT) character in their low-energy transitions in the visible region probably facilitates photolytic iron,Cp bond cleavage, but this reactivity is suppressed when the strength of the iron,Cp bond is increased by the presence of electron-donating substituents on the cyclopentadienyl rings. [source]


Metal-Induced Tautomerization of p - to o -Quinone Compounds: Experimental Evidence from CuI and ReI Complexes of Azophenine and DFT Studies

CHEMISTRY - A EUROPEAN JOURNAL, Issue 1 2004
Stéphanie Frantz
Abstract Azophenine (7,8-diphenyl-2,5-bis(phenylamino)- p -quinonediimine, Lp) reacts with [Cu(PPh3)4](BF4) or [Re(CO)5Cl] to yield the (Ph3P)2Cu+ or [(OC)3ClRe] complex of the tautomeric form 7,8-diphenyl-4,5-bis(phenylamino)- o -quinonediimine, Lo, as evident from structure determinations and from very intense metal-to-ligand charge transfer (MLCT) transitions in the visible region. Time-dependent DFT (TD-DFT) calculations on model complexes [(N,N)Re(CO)3Cl] confirm the spectroscopic results, showing considerably higher oscillator strengths of the MLCT transition for the o -quinonediimine complexes in comparison to compounds with N,N=1,4-dialkyl-1,4-diazabutadiene. The complexes are additionally stabilized through hydrogen bonding between two now ortho -positioned NHPh substituents and one fluoride of the BF4, anion (Cu complex) or the chloride ligand (Re complex). DFT Calculations on the model ligands p -quinonediimine or 2,5-diamino- p -quinonediimine and their ortho -quinonoid forms with and without Li+ or Cu+ are presented to discuss the relevance for metal-dependent quinoproteins. [source]