Metalloproteinase

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Metalloproteinase

  • matrix metalloproteinase
  • the matrix metalloproteinase

  • Terms modified by Metalloproteinase

  • metalloproteinase activity
  • metalloproteinase domain
  • metalloproteinase expression
  • metalloproteinase inducer
  • metalloproteinase inhibitor
  • metalloproteinase mmp-2
  • metalloproteinase production

  • Selected Abstracts


    Facile Functionalization and Phase Reduction Route of Magnetic Iron Oxide Nanoparticles for Conjugation of Matrix Metalloproteinase,

    ADVANCED ENGINEERING MATERIALS, Issue 6 2010
    Dan Li
    Abstract A protocol for the simultaneous functionalization and phase reduction route of iron oxide magnetic nanoparticles (MNPs) and its further bioconjugation is presented. It was found that surface functionalization of maghemite (,-Fe2O3) nanoparticles with mercaptopropyltrimethoxysilane (MPTMS) under anoxic environment at above 80,°C promotes in situ conversion to magnetite (Fe3O4). Full conversion to Fe3O4, as probed by Mössbauer spectroscopy, with accompanied increase in the composite saturation magnetization, was achieved at 120,°C. By controlling the MPTMS concentration, the resultant silane-MNPs morphology can be tuned from having homogeneous thin layer (<1,nm) to thick continuous silane with embedded MNP multicores. Likewise the amount of surface distal thiol moieties was dependent on the silanization conditions. The density of distal thiols (i.e., amount of thiol per surface area) and resultant aggregate size have direct impact on the attachment, as well as the activity and reusability of the conjugated matrix metalloproteinase (MMP-2, using sulfo-SMCC as crosslinker). The work has important implication to the field of magneto-chemotherapeutics, where spatial control of conjugated active biomolecules under magnetic field and T2 -weighted MRI contrast can be achieved simultaneously. [source]


    Glucose-regulated protein 78: A new partner of p53 in trophoblast

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 23 2009
    Serge Arnaudeau
    Abstract Although wild-type p53 protein is overexpressed in first trimester trophoblast, it is inactive towards its target genes Metalloproteinase 2 and 9. This seems to be due to a complex mechanism of inactivation and stabilization of p53 relying on the formation of protein complexes involving the N-terminus of p53. To detect the proteins associated with this sequence, we incubated biotinylated p53 N-terminal peptide in cytotrophoblastic cell medium 24,h before lysis of cells. We purified the proteins retained on biotinylated peptide using a neutravidin affinity column. Proteins were then identified by peptide mass finger printing followed or not by peptide fragmentation sequencing. Among these proteins, we identified glucose-regulated protein 78 (GRP78) and verified its interaction with p53 in trophoblastic cells by immunoprecipitation and Western blot analysis. Moreover, the decreased expression of GRP78 induced by GRP78siRNA or versipelostatin decreased the formation of high molecular weight p53 complexes and p53 monomer and increased trophoblastic invasion. These results suggest that GRP78 is involved in inactivation and stabilization of p53 and in the regulation of trophoblastic invasion. [source]


    Matrix Metalloproteinase 2 in Reduced-Size Liver Transplantation: Beyond the Matrix

    AMERICAN JOURNAL OF TRANSPLANTATION, Issue 5 2010
    S. Padrissa-Altés
    We studied the contribution of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) to the beneficial effects of preconditioning (PC) in reduced-size orthotopic liver transplantation (ROLT). We also examined the role of c-Jun N-terminal kinase (JNK) and whether it regulates MMP2 in these conditions. Animals were subjected to ROLT with or without PC and pharmacological modulation, and liver tissue samples were then analyzed. We found that MMP2, but notMMP9, is involved in the beneficial effects of PC in ROLT. MMP2 reduced hepatic injury and enhanced liver regeneration. Moreover, inhibition of MMP2 in PC reduced animal survival after transplantation. JNK inhibition in the PC group decreased hepatic injury and enhanced liver regeneration. Furthermore, JNK upregulated MMP2 in PC. In addition, we showed that Tissue inhibitors of matrix metalloproteinases 2 (TIMP2) was also upregulated in PC and that JNK modulation also altered its levels in ROLT and PC. Our results open up new possibilities for therapeutic treatments to reduce I/R injury and increase liver regeneration after ROLT, which are the main limitations in living-donor transplantation. [source]


    Effects of Alendronate on A Disintegrin and Metalloproteinase with Thrombospondin Motifs Expression in the Developing Epiphyseal Cartilage in Rats

    ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2009
    M. S. Kim
    Summary A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) have been reported to play a role in the degradation of aggrecan, a major component of cartilage. This study was performed to examine the effects of alendronate on the expression of ADAMTS in developing femoral epiphyseal cartilage. Primary cultured chondrocytes from this cartilage were treated with alendronate in vitro and postnatal day 1 rats were injected subcutaneously with alendronate (1 mg/kg) every second day in vivo. The number of cultured chondrocytes and their aggrecan mRNA levels were unaffected by the alendronate treatment at 10,6 to 10,4 m concentrations. The mRNA levels of ADAMTS-1, -2 and -9 in chondrocytes were also unaffected. However, the levels of ADAMTS-5 and -4 were reduced significantly by the same treatment. The thickness of the proliferating chondrocyte layers and the aggrecan mRNA levels in the epiphysis were unaffected by the alendronate treatment in vivo. However, the hypertrophied chondrocyte layers became significantly thicker, and the size of the secondary ossification centre was reduced significantly by the same treatment (P < 0.05). Both ADAMTS-4 and -5 mRNA expressions were also reduced significantly in vivo. The immunoreactivity against ADAMTS-4 was seen in hypertrophied chondrocytes and reduced significantly by the alendronate treatment. These results suggested that alendronate can inhibit the degradation of aggrecan in the articular cartilage by downregulating the expression of matrix enzymes such as ADAMTS-4 and -5. [source]


    Mercury Exposure Increases Circulating Net Matrix Metalloproteinase (MMP)-2 and MMP-9 Activities

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2009
    Anna L. B. Jacob-Ferreira
    We investigated whether there is an association between the circulating levels of MMP-2, MMP-9, their endogenous inhibitors (the tissue inhibitors of metalloproteinases; TIMPs) and the circulating Hg levels in 159 subjects environmentally exposed to Hg. Blood and plasma Hg were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA respectively. Thiobarbituric acid-reactive species (TBARS) were measured in plasma to assess oxidative stress. Selenium (Se) levels were determined by ICP-MS because it is an antioxidant. The relations between bioindicators of Hg and the metalloproteinases levels were examined using multivariate regression models. While we found no relation between blood or plasma Hg and MMP-9, plasma Hg levels were negatively associated with TIMP-1 and TIMP-2 levels, and thereby with increasing MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios, thus indicating a positive association between plasma Hg and circulating net MMP-9 and MMP-2 activities. These findings provide a new insight into the possible biological mechanisms of Hg toxicity, particularly in cardiovascular diseases. [source]


    Solid-State NMR of Matrix Metalloproteinase 12: An Approach Complementary to Solution NMR

    CHEMBIOCHEM, Issue 5 2007
    Stéphane Balayssac Dr.
    Data transfer. The solid-state proton-driven spin diffusion (PDSD) and J -decoupled PDSD NMR spectra of the microcrystalline catalytic domain of matrix metalloproteinase 12 (MMP-12, 17 kDa) have been recorded. It is shown that such spectra can be largely assigned in a few days by using the available liquid-state assignment and validated with an independent sequential assignment based on 3D NCACX and NCOCX PDSD experiments. This demonstrates how quickly the liquid-state assignment of comparably large protein can be transferred to the solid state. [source]


    Cardioprotection of bradykinin at reperfusion involves transactivation of the epidermal growth factor receptor via matrix metalloproteinase-8

    ACTA PHYSIOLOGICA, Issue 4 2009
    C. Methner
    Abstract Aim:, The endogenous autacoid bradykinin (BK) reportedly reduces myocardial infarct size when given exogenously at reperfusion. Muscarinic and opioid G-protein-coupled receptors are equally protective and have been shown to couple through a matrix metalloproteinase (MMP)-dependent transactivation of the epidermal growth factor receptor (EGFR). Here we test whether BK protects the rat heart through the EGFR by an MMP-dependent pathway. Methods:, Infarct size was measured in isolated perfused rat hearts undergoing 30 min regional ischaemia followed by 120 min reperfusion. In additional studies HL-1 cardiomyocytes were loaded with tetramethylrhodamine ethyl to measure their mitochondrial membrane potential (,m). Adding the calcium ionophore calcimycin, causes ,m-collapse presumably due to calcium-induced mitochondrial permeability transition. Results:, As expected, BK (100 nmol L,1) started 5 min prior to reperfusion reduced infarct size from 38.9 ± 2.0% of the ischaemic zone in control hearts to 22.2 ± 3.3% (P < 0.001). Co-infusing the EGFR inhibitor AG1478, the broad-spectrum MMP-inhibitor GM6001, or a highly selective MMP-8 inhibitor abolished BK's protection, thus suggesting an MMP-8-dependent EGFR transactivation in the signalling. Eighty minutes of exposure to calcimycin reduced the mean cell fluorescence to 37.4 ± 1.8% of untreated cells while BK could partly preserve the fluorescence and, hence, protect the cells (50.5 ± 2.3%, P < 0.001). The BK-induced mitochondrial protection could again be blocked by AG1478, GM6001 and MMP-8 inhibitor. Finally, Western blotting revealed that BK's protection was correlated with increased phosphorylation of EGFR and its downstream target Akt. Conclusion:, These results indicate that BK at reperfusion triggers its protective signalling pathway through MMP-8-dependent transactivation of the EGFR. [source]


    Serum Iron and Matrix Metalloproteinase-9 Variations in Limbs Affected by Chronic Venous Disease and Venous Leg Ulcers

    DERMATOLOGIC SURGERY, Issue 6 2005
    Paolo Zamboni MD
    Background. Severe chronic venous disease (CVD) is characterized by both dermal hemosiderin accumulation and matrix metalloproteinase (MMP) hyperactivation. The iron-driven pathway is one of the recognized mechanisms of MMP hyperactivation. Objective. To investigate the potential consequences of leg hemosiderin deposits on both iron metabolism and activation of MMPs. Methods. We contemporaneously assessed the following in the serum of the arm and ankle veins of 30 patients (C4,6) with CVD and 14 normal subjects: ferritin, transferrin, iron, percentage of transferrin iron binding capacity (%TIBC), and MMP-9. Optical microscopy examinations with Perls' staining of chronic wounds were also performed. Results. Histology consistently revealed iron deposits. Serum ferritin, iron, and %TIBC were significantly increased in the legs affected by severe CVD compared with the arm of the same subjects or the controls. In addition, iron and %TIBC were significantly elevated in the legs of ulcer patients. The rate of activation of MMP-9 was significantly elevated in CVD. Conclusions. The increased iron deposition in legs affected by CVD seems to be more instable in ulcer patients, leading to iron release in the serum of the affected leg. Our data suggest the iron-driven pathway as a further mechanism for MMP hyperexpression leading to tissue lesion. [source]


    Type I collagen is a genetic modifier of matrix metalloproteinase 2 in murine skeletal development

    DEVELOPMENTAL DYNAMICS, Issue 6 2007
    Mikala Egeblad
    Abstract Recessive inactivating mutations in human matrix metalloproteinase 2 (MMP2, gelatinase A) are associated with syndromes that include abnormal facial appearance, short stature, and severe bone loss. Mmp2,/, mice have only mild aspects of these abnormalities, suggesting that MMP2 function is redundant during skeletal development in the mouse. Here, we report that Mmp2,/, mice with additional mutations that render type I collagen resistant to collagenase-mediated cleavage to TCA and TCB fragments (Col1a1r/r mice) have severe developmental defects resembling those observed in MMP2 -null humans. Composite Mmp2,/,;Col1a1r/r mice were born in expected Mendelian ratios but were half the size of wild-type, Mmp2,/,, and Col1a1r/r mice and failed to thrive. Furthermore, composite Mmp2,/,;Col1a1r/r animals had very abnormal craniofacial features with shorter snouts, bulging skulls, incompletely developed calvarial bones and unclosed cranial sutures. In addition, trabecular bone mass was reduced concomitant with increased numbers of bone-resorbing osteoclasts and osteopenia. In vitro, MMP2 had a unique ability among the collagenolytic MMPs to degrade mutant collagen, offering a possible explanation for the genetic interaction between Mmp2 and Col1a1r. Thus, because mutations in the type I collagen gene alter the phenotype of mice with null mutations in Mmp2, we conclude that type I collagen is an important modifier gene for Mmp2. Developmental Dynamics 236:1683,1693, 2007. © 2007 Wiley-Liss, Inc. [source]


    Tissue inhibitor of metalloproteinase-2 (TIMP-2) expression during cardiac neural crest cell migration and its role in proMMP-2 activation

    DEVELOPMENTAL DYNAMICS, Issue 4 2004
    V. Cantemir
    Abstract Matrix metalloproteinases (MMPs) are important mediators of neural crest (NC) cell migration. Here, we examine the distribution of tissue inhibitor of metalloproteinase (TIMP) -2 and TIMP-3 and test whether manipulating TIMP levels alters chicken cardiac NC cell migration. TIMP-2 mRNA is expressed at stage 11 in the neural epithelium and only in migrating cardiac NC cells. TIMP-3 mRNA is expressed only in the notochord at stage 8 and later in the outflow tract myocardium. Exogenous TIMP-2 increases NC motility in vitro at low concentrations but has no effect when concentrations are increased. In vitro, NC cells express membrane type-1 matrix metalloproteinase (MT1-MMP) and TIMP-2 and they secrete and activate proMMP-2. Antisense TIMP-2 oligonucleotides block proMMP-2 activation, decrease NC cell migration from explants, and perturb NC morphogenesis in ovo. Because TIMP-2 is required for activation of proMMP-2 by MT1-MMP, this finding suggests TIMP-2 expression by cardiac NC cells initiates proMMP-2 activation important for their migration. Developmental Dynamics 231:709,719, 2004. © 2004 Wiley-Liss, Inc. [source]


    Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats

    DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2010
    Wenni Tong
    Abstract A recent study has shown that increased activity of matrix metalloproteinases-2 and metalloproteinases-9 (MMP-2 and MMP-9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP-2 and MMP-9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP-2 and MMP-9 and the protein abundance of TIMP-1 and TIMP-2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP-2 at day 0, and increased MMP-9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP-2, MMP-9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010 [source]


    Peripheral blood level alterations of TIMP-1, MMP-2 and MMP-9 in patients with Type 1 diabetes

    DIABETIC MEDICINE, Issue 10 2001
    P. R. Maxwell
    Abstract Aim To determine the plasma levels of enzymes and inhibitors involved in extracellular matrix turnover in patients with Type 1 diabetes with normal renal function. Methods Plasma levels of matrix metalloproteinases 2 and 9 (MMP-2, MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) were measured in 43 Type 1 diabetic subjects and age- and sex-matched controls. Results No significant difference in plasma MMP-2 between diabetic patients and controls was observed. MMP-9 was detected in the plasma of 15 diabetic patients (35%), but undetectable in all control subjects (P < 0.015). Plasma TIMP-1 concentrations were significantly elevated (P < 0.001) in diabetic patients compared to controls. There was no correlation observed between MMP-2, MMP-9 and TIMP-1 and similarly between MMP-2, MMP-9 and TIMP-1 and age, duration of diabetes, blood pressure and glycated haemoglobin (HbA1c). Conclusions This study has demonstrated alterations in several plasma extracellular matrix modulators in the absence of significant vascular disease. Diabet. Med. 18, 777,780 (2001) [source]


    Equine laminitis: glucose deprivation and MMP activation induce dermo-epidermal separation in vitro

    EQUINE VETERINARY JOURNAL, Issue 3 2004
    K. R. French
    Summary Reasons for performing study: Acute laminitis is characterised by hoof lamellar dermal-epidermal separation at the basement membrane (BM) zone. Hoof lamellar explants cultured in vitro can also be made to separate at the basement membrane zone and investigating how this occurs may give insight into the poorly understood pathophysiology of laminitis. Objectives: To investigate why glucose deprivation and metalloproteinase (MMP) activation in cultured lamellar explants leads to dermo-epidermal separation. Methods: Explants, cultured without glucose or with the MMP activator p -amino-phenol-mercuric acetate (APMA), were subjected to tension and processed for transmission electron microscopy (TEM). Results: Without glucose, or with APMA, explants under tension separated at the dermo-epidermal junction. This in vitro separation occurred via 2 different ultrastructural processes. Lack of glucose reduced hemidesmosomes (HDs) numbers until they disappeared and the basal cell cytoskeleton collapsed. Anchoring filaments (AFs), connecting the basal cell plasmalemma to the BM, were unaffected although they failed under tension. APMA activation of constituent lamellar MMPs did not affect HDs but caused AFs to disappear, also leading to dermo-epidermal separation under tension. Conclusions: Natural laminitis may occur in situations where glucose uptake by lamellar basal cells is compromised (e.g. equine Cushing's disease, obesity, hyperlipaemia, ischaemia and septicaemia) or when lamellar MMPs are activated (alimentary carbohydrate overload). Potential relevance: Therapies designed to facilitate peripheral glucose uptake and inhibit lamellar MMP activation may prevent or ameliorate laminitis. [source]


    8-isoprostane increases scavenger receptor A and matrix metalloproteinase activity in THP-1 macrophages, resulting in long-lived foam cells

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 7 2004
    H. Scholz
    Abstract Background, Oxidative stress is a key factor in atherogenesis, in which it is closely associated with the inflammation and formation of bioactive lipids. Although 8-isoprostane is regarded as a reliable marker of oxidative stress in vivo, the pathogenic role of this F2 -isoprostane in atherogenesis is far from clear. Based on the important role of foam cells in the initiation and progression of atherosclerosis we hereby examined the ability of 8-isoprostane to modulate oxidized (ox)LDL-induced foam cell formation and the function of these cells, particularly focusing on the effect on matrix degradation. Methods and results, 8-isoprostane (10 µM) augmented the oxLDL-induced (20 µg mL,1) lipid accumulation of THP-1 macrophages evaluated by Oil-Red-O staining and lipid mass quantification (colourimetric assay). Additionally, 8-isoprostane induced the expression of the scavenger receptor A type 1 (MSR-1) [mRNA and protein level], assessed by RT-PCR and Western blotting, respectively. Moreover, 8-isoprostane counteracted the oxLDL-induced apoptosis of these cells, involving both mitochondrial-protective and caspase-suppressive mechanisms. Along with these changes, 8-isoprostane increased the oxLDL-induced gene expression of matrix metalloproteinase (MMP)-9 and its endogenous inhibitor [i.e. tissue inhibitor of MMP (TIMP)-1] accompanied by enhanced total MMP activity. Conclusions, We show that 8-isoprostane increases foam cell formation at least partly by enhancing MSR-1 expression and by inhibiting apoptosis of these cells, inducing long-lived foam cells with enhanced matrix degrading capacity. Our findings further support a role for 8-isoprostane not only as a marker of oxidative stress in patients with atherosclerotic disorders, but also as a mediator in atherogenesis and plaque destabilization. [source]


    The effects of natalizumab on inflammatory mediators in multiple sclerosis: prospects for treatment-sensitive biomarkers

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 4 2009
    M. Khademi
    Background:, Natalizumab affects systemic cytokine expressions and clinical course in relapsing,remitting multiple sclerosis (RRMS). We analyzed levels of inflammatory cytokines in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs), levels of matrix metalloproteinase (MMP)-9 and osteopontin (OPN) in CSF, and clinical outcome measures in 22 natalizumab-treated RRMS patients. Methods:, mRNA levels of cytokines in cells were detected with real-time RT-PCR. Protein levels of OPN and MMP-9 were measured by ELISA. Results:, Natalizumab reduced CSF cell counts (P < 0.0001). Tumor necrosis factor (TNF) and interferon-, (IFN-,) mRNAs were significantly increased in PBMCs. In contrast, expressions of IFN-, and interleukin (IL)-23 were decreased but IL-10 increased in the CSF cells. OPN and MMP-9 were reduced in the CSF. Patients being in remission at baseline showed the same deviations of mediators as those in relapse after natalizumab treatment. The open label clinical outcome measures were either stable or improved during therapy. Conclusions:, Natalizumab attenuates pro-inflammatory mediators intrathecally and the reduced pro-inflammatory milieu may allow increased production of the anti-inflammatory mediator IL-10. The increased systemic cytokines may impede the improvement of certain clinical measures like fatigue. The affected mediators seem to be sensitive to an immune-modifying treatment which could be used as biomarkers for this therapy. [source]


    Facile Functionalization and Phase Reduction Route of Magnetic Iron Oxide Nanoparticles for Conjugation of Matrix Metalloproteinase,

    ADVANCED ENGINEERING MATERIALS, Issue 6 2010
    Dan Li
    Abstract A protocol for the simultaneous functionalization and phase reduction route of iron oxide magnetic nanoparticles (MNPs) and its further bioconjugation is presented. It was found that surface functionalization of maghemite (,-Fe2O3) nanoparticles with mercaptopropyltrimethoxysilane (MPTMS) under anoxic environment at above 80,°C promotes in situ conversion to magnetite (Fe3O4). Full conversion to Fe3O4, as probed by Mössbauer spectroscopy, with accompanied increase in the composite saturation magnetization, was achieved at 120,°C. By controlling the MPTMS concentration, the resultant silane-MNPs morphology can be tuned from having homogeneous thin layer (<1,nm) to thick continuous silane with embedded MNP multicores. Likewise the amount of surface distal thiol moieties was dependent on the silanization conditions. The density of distal thiols (i.e., amount of thiol per surface area) and resultant aggregate size have direct impact on the attachment, as well as the activity and reusability of the conjugated matrix metalloproteinase (MMP-2, using sulfo-SMCC as crosslinker). The work has important implication to the field of magneto-chemotherapeutics, where spatial control of conjugated active biomolecules under magnetic field and T2 -weighted MRI contrast can be achieved simultaneously. [source]


    Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2 2006
    Yoshihiro Nishitani
    Mild acids are known to activate dentin matrix metalloproteinase (MMPs). All self-etching dental adhesives are acidic (pH 1.5,2.7) and may activate dentin MMPs. The purpose of this study was to compare the ability of several all-in-one adhesives to activate gelatinolytic and collagenolytic activities in powdered mineralized dentin. Powdered dentin made from human teeth was mixed with all-in-one adhesives (Clearfil Tri-S Bond, G-Bond, Adper Prompt L-Pop) or a self-etching primer (Clearfil SE Bond primer) for varying times and then the reaction was stopped by extracting the adhesives using acetone. Fresh untreated mineralized dentin powder had a gelatinolytic activity of 3.31 ± 0.39 relative fluorescent units (RFU) per mg dry weight (24 h) that increased, over storage time, to 87.5 RFU mg,1 (24 h) after 6,8 wk. When fresh powder was treated with acidic Tri-S Bond, the gelatinolytic activity increased from 3.24 ± 0.70 RFU mg,1 to >,112.5 RFU mg,1 (24 h) after 20 min and then remained unchanged. Monomers with lower pH values produced less activity. There was a significant, direct correlation between gelatinolytic activity and pH, with Tri-S giving the highest activity. Coating dentin powder with Tri-S resin prevented fluorescent substrates from gaining access to the enzyme, even though it activated the enzyme. In conclusion, self-etch adhesives may activate latent MMP and increase the activity to near-maximum levels and contribute to the degradation of resin,dentin bonds over time. [source]


    In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese

    EXPERIMENTAL DERMATOLOGY, Issue 8 2004
    Nathalie Chebassier
    Abstract:, Matrix metalloproteinase (MMP)-2 and MMP-9 are involved in keratinocyte migration and granulation tissue remodeling during wound healing. Thermal water cures are sometimes proposed as complementary treatment for accelerating healing of wounds resulting from burns and/or surgery, but their mechanisms of action remain unknown. Some thermal waters are rich in trace elements such as boron and manganese. Interestingly, clinical studies have shown the beneficial effects of trace elements such as boron and manganese for human wound healing. To try to specify the role of trace elements in cutaneous healing, the present study investigated the effects of these trace elements on the production of MMP-2 and MMP-9 by normal human keratinocytes cultured in vitro. Immunohistochemistry and Western blot showed that intracellular MMP-9 expression in keratinocytes was induced when incubated for 6 h with boron at 10 µg/ml or manganese at 0.2 µg/ml. Moreover, gelatin zymography on keratinocyte supernatants showed an increase of gelatinase secretion after 24 h of incubation of keratinocytes with boron or manganese, regardless of concentration. Gelatinase secretion was not associated with keratinocyte proliferation induced by trace elements. Thus, our results suggest that boron and manganese could play a role in the clinical efficiency of thermal water on wound healing. [source]


    Golgi reassembly stacking protein 55 interacts with membrane-type (MT) 1-matrix metalloprotease (MMP) and furin and plays a role in the activation of the MT1-MMP zymogen

    FEBS JOURNAL, Issue 15 2010
    Christian Roghi
    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a proteinase involved in the remodelling of extracellular matrix and the cleavage of a number of substrates. MT1-MMP is synthesized as a zymogen that requires intracellular post-translational cleavage to gain biological activity. Furin, a member of the pro-protein convertase family, has been implicated in the proteolytic removal of the MT1-MMP prodomain sequence. In the present study, we demonstrate a role for the peripheral Golgi matrix protein GRASP55 in the furin-dependent activation of MT1-MMP. MT1-MMP and furin were found to co-localize with Golgi reassembly stacking protein 55 (GRASP55). Further analysis revealed that GRASP55 associated with the cytoplasmic domain of both proteases and that the LLY573 motif in the MT1-MMP intracellular domain was crucial for the interaction with GRASP55. Overexpression of GRASP55 was found to enhance the formation of a complex between MT1-MMP and furin. Finally, we report that disruption of the interaction between GRASP55 and furin led to a reduction in pro-MT1-MMP activation. Taken together, these data suggest that GRASP55 may function as an adaptor protein coupling MT1-MMP with furin, thus leading to the activation of the zymogen. Structured digital abstract ,,MINT-7897990: Furin (uniprotkb:P09958) and GRASP55 (uniprotkb:Q9H8Y8) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897801: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT2-MMP (uniprotkb:P51511) by two hybrid (MI:0018) ,,MINT-7897821: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT3-MMP (uniprotkb:P51512) by two hybrid (MI:0018) ,,MINT-7897577: GRASP55 (uniprotkb:Q9R064) and MT1-MMP (uniprotkb:P50281) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897366: MT1-MMP (uniprotkb:P50281) physically interacts (MI:0915) with GRASP55 (uniprotkb:Q9H8Y8) by anti bait coimmunoprecipitation (MI:0006) ,,MINT-7897617, MINT-7897659, MINT-7897681, MINT-7897702, MINT-7897725, MINT-7898032, MINT-7898011, MINT-7897907, MINT-7897884: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT1-MMP (uniprotkb:P50281) by two hybrid (MI:0018) ,,MINT-7898002: MT1-MMP (uniprotkb:P50281) physically interacts (MI:0914) with Furin (uniprotkb:P09958) by anti bait coimmunoprecipitation (MI:0006) ,,MINT-7897500: MT1-MMP (uniprotkb:P50281) and Giantin (uniprotkb:Q14789) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897750, MINT-7897394: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT1-MMP (uniprotkb:P50281) by anti tag coimmunoprecipitation (MI:0007) ,,MINT-7897562: MT1-MMP (uniprotkb:P50281) and GRASP55 (uniprotkb:Q9H8Y8) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897512: TGN46 (uniprotkb:O43493) and MT1-MMP (uniprotkb:P50281) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897921, MINT-7897975: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with Furin (uniprotkb:P09958) by two hybrid (MI:0018) ,,MINT-7898052, MINT-7897410: MT1-MMP (uniprotkb:P50281) physically interacts (MI:0915) with GRASP55 (uniprotkb:Q9R064) by anti bait coimmunoprecipitation (MI:0006) ,,MINT-7897951: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with PC7 (uniprotkb:Q16549) by two hybrid (MI:0018) ,,MINT-7897866: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT5-MMP (uniprotkb:Q9Y5R2) by two hybrid (MI:0018) ,,MINT-7897633: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with TGFA (uniprotkb:P01135) by two hybrid (MI:0018) ,,MINT-7897551: GRASP55 (uniprotkb:Q9H8Y8) and Giantin (uniprotkb:Q14789) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897938: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with PC5/6B (uniprotkb:Q04592) by two hybrid (MI:0018) [source]


    The role of exon 5 in fibroblast collagenase (MMP-1) substrate specificity and inhibitor selectivity

    FEBS JOURNAL, Issue 6 2001
    Vera Knäuper
    Interstitial collagen is degraded by members of the matrix metalloproteinase (MMP) family, including MMP-1. Previous work has shown that the region of MMP-1 coded for by exon 5 is implicated both in substrate specificity and inhibitor selectivity. We have constructed a chimeric enzyme, the exon 5 chimera, consisting primarily of MMP-1, with the region coded for by exon 5 replaced with the equivalent region of MMP-3, a noncollagenolytic MMP. Unlike MMP-3, the exon 5 chimera is capable of cleaving type I collagen, but the activity is only 2.2% of trypsin-activated MMP-1. ,Superactivation' of the chimera has no discernible effect, suggesting that the salt bridge formed in ,superactive' MMP-1 is not present. The kinetics for exon 5 chimera cleavage of two synthetic substrates display an MMP-3 phenotype, however, cleavage of gelatin is slightly impaired as compared to the parent enzymes. The Kiapp values for the exon 5 chimera complexed with synthetic inhibitors and N-terminal TIMP-2 also show a more MMP-3-like behaviour. However, the kon values for N-terminal TIMP-1 and N-terminal TIMP-2 are more comparable to those for MMP-1. These data show that the region of MMP-1 coded for by exon 5 is involved in both substrate specificity and inhibitor selectivity and the structural basis for our findings is discussed. [source]


    Thioredoxin alters the matrix metalloproteinase/tissue inhibitors of metalloproteinase balance and stimulates human SK-N-SH neuroblastoma cell invasion

    FEBS JOURNAL, Issue 2 2001
    Antonietta R. Farina
    Thioredoxin (Trx) inhibited tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 activity with an approximate IC50 of 0.3 µm, matrix metalloproteinase (MMP)-2 activity with an approximate IC50 of 2 µm but did not inhibit MMP-9 activity. This differential capacity of Trx to inhibit TIMP and MMP activity resulted in the promotion of MMP-2 and MMP-9 activity in the presence of molar TIMP excess. Inhibition of TIMP and MMP-2 activity by Trx was dependent upon thioredoxin reductase (TrxR), was abolished by Trx catalytic site mutation and did not result from TIMP or MMP-2 degradation. HepG2 hepatocellular carcinoma cells induced to secrete Trx inhibited TIMP activity in the presence of TrxR. SK-N-SH neuroblastoma cells secreted TrxR, which inhibited TIMP and MMP-2 activity in the presence of Trx. Trx stimulated SK-N-SH invasive capacity in vitro in the absence of exogenous TrxR. This study therefore identifies a novel extracellular role for the thioredoxin/thioredoxin reductase redox system in the differential inhibition of TIMP and MMP activity and provides a novel mechanism for altering the TIMP/MMP balance that is of potential relevance to tumor invasion. [source]


    Cloning of MMP-26

    FEBS JOURNAL, Issue 11 2000
    A novel matrilysin-like proteinase
    A cDNA encoding a novel human matrix metalloproteinase (MMP), named MMP-26, was cloned from fetal cDNA. The deduced 261-amino-acid sequence is homologous to macrophage metalloelastase (51.8% identity). It includes only the minimal characteristic features of the MMP family: a signal peptide, a prodomain and a catalytic domain. As with MMP-7, this new MMP does not comprise the hemopexin domain, which is believed to be involved in substrate recognition. A study of MMP-26 mRNA steady states levels reveals, among the tissue examined, a specific expression in placenta. MMP-26 mRNA could also be detected in several human cell lines such as HEK 293 kidney cells and HFB1 lymphoma cells. Recombinant MMP-26 was produced in mammalian cells and used to demonstrate a proteolytic activity of the enzyme on gelatin and ,-casein. [source]


    Neutrophil elastase in pressure ulcer fluid degrades fibronectin in the exudates

    GERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 3 2004
    Shingo Ai
    Background: Pressure ulcers are classified as chronic wounds, which do not heal in a timely fashion. Fibronectin is condensed in granulation tissue, and essential glycoprotein of wound healing. It has been proposed that fibronectin degradation may be involved in delaying wound healing. We have investigated whether pressure ulcer fluid (PUF) contains degraded fibronectin. In addition, we tried to identify the proteinase which contributes to fibronectin degradation in PUF. Methods: Fibronectin degradation and the presence of neutrophil elastase (NE) in PUF were determined by immunoblot analysis. Fibronectin degradation activity in PUF was determined in the presence of various proteinase inhibitors. NE activity was assessed using NE specific substrate. Results: Immunoblot analysis revealed that degraded fibronectin was observed in PUF samples but not in acute wound fluid (AWF). The PUF contained a proteinase capable of degrading freshly added fibronectin and its activity in PUF was blocked by a broad-spectrum serine proteinase inhibitor or sivelestat, a specific neutrophil elastase inhibitor, but not by metalloproteinase and cysteine proteinase inhibitors. Immunoblot analysis of PUF using an antineutrophil elastase antibody revealed that neutrophil elastase was detected as three bands at molecular weights of ,30 kDa, ,38 kDa, and ,54 kDa, indicating that neutrophil elastase in the exudates existed not only as free monomers, but also in polymers or complexes with other molecules. Conclusion: These results suggest that PUF contains a high level of neutrophil elastase which may be involved in the delay of the healing of pressure ulcer through the fibronectin degradation. [source]


    Microglial expression of ,v,3 and ,v,5 integrins is regulated by cytokines and the extracellular matrix: ,5 Integrin null microglia show no defects in adhesion or MMP-9 expression on vitronectin

    GLIA, Issue 7 2009
    Richard Milner
    Abstract As the primary immune effector cells in the CNS, microglia play a central role in regulating inflammation. The extracellular matrix (ECM) protein vitronectin is a strong inducer of microglial activation, switching microglia from a resting into an activated potentially destructive phenotype. As the activating effect of vitronectin is mediated by ,v integrins, the aim of the current study was to evaluate the requirement of the ,v,5 integrin in mediating microglial adhesion and activation to vitronectin, by studying these events in ,5 integrin-null murine microglia. Surprisingly, ,5 integrin null microglia were not defective in adhesion to vitronectin. Further analysis showed that microglia express the ,v,3 integrin, in addition to ,v,5. Flow cytometry revealed that microglial ,v integrin expression is regulated by cytokines and ECM proteins. ,v,3 integrin expression was downregulated by IFN-,, TNF, LPS, and TGF-,1. ,v,5 expression was also reduced by IFN-,, TNF, and LPS, but strongly increased by the antiactivating factors TGF-,1 and laminin. Gel zymography revealed that ,5 integrin null microglia showed no deficiency in their expression of matrix metalloproteinase (MMP)-9 in response to vitronectin. Taken together, these data show that microglia express two different ,v integrins, ,v,3 and ,v,5, and that expression of these integrins is independently regulated by cytokines and ECM proteins. Furthermore, it reveals that the ,v,5 integrin is not essential for mediating microglial adhesion and MMP-9 expression in response to vitronectin. © 2008 Wiley-Liss, Inc. [source]


    Upregulation of discoidin domain receptor 2 in nasopharyngeal carcinoma,

    HEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 4 2008
    Huey-Huey Chua PhD
    Abstract Background. Nasopharyngeal carcinoma (NPC) is associated with Epstein-Barr virus (EBV) and has high metastatic potential. Discoidin domain receptors (DDR1, DDR2) are receptor-type tyrosine kinases activated by collagen. Their ability to induce expression of matrix metalloproteinase is related with tumor invasion. Therefore, we aim to investigate DDRs gene expression and its regulation in NPC. Methods and Results. By use of real-time quantitative polymerase chain reaction (Q-PCR), DDR2 gene expression but not DDR1 was significantly higher in primary and metastatic NPC. DDR2 was predominantly distributed in NPC tumor cells rather than in infiltrating lymphocytes. EBV Z-transactivator (Zta) transfection may distinctly elevate DDR2 level. Furthermore, data from reporter assay indicate that Zta could transactivate DDR2 promoter activity, suggesting the possible upregulation mechanism. Conclusion. DDR2 was differentially upregulated in NPC and modulated by EBV Zta protein. DDR2 may play a role in NPC invasion and serve as a diagnostic and therapeutic target. © 2007 Wiley Periodicals, Inc. Head Neck, 2008 [source]


    Molecular characterization of epstein-barr virus and oncoprotein expression in nasopharyngeal carcinoma in Korea

    HEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 7 2004
    Yoon Kyung Jeon MD
    Abstract Background. We evaluated the characteristics of nasopharyngeal carcinoma in Korea, including its clinical, pathologic, and molecular features, especially emphasizing on the EBV strains involved, latent membrane protein 1 (LMP1) expression, and the alterations of matrix metalloproteinase 9 (MMP9) and E-cadherin expression. Methods. The presence of EBV was evaluated by EBER in situ hybridization, and the expression of LMP1, MMP9, and E-cadherin by immunohistochemistry. The characterization of EBV type and LMP1 variant was performed by PCR. Results. EBER was detected in 55 of 57 cases (96%) of nonkeratinizing carcinoma (NKC) and undifferentiated carcinoma, but in only four of nine cases (44%) of squamous cell carcinoma (SCC). EBER positivity was much higher in the group with nodal metastases (p = .003). The predominant strain of EBV infection was type A (81%) and a 30-bp deletion LMP1 variant (77%). All EBER-positive SCCs were infected with EBV type A. LMP1 expression was detected in 36 of 59 (61%) patients with latent EBV infection and MMP9 in 41 of these 59 (69%). LMP1 positivity was much higher among the patients aged 50 years and younger. MMP9 expression was associated with LMP1 expression (p = .008), and nodal and distant metastasis (p = .019, p = .045). Loss of E-cadherin expression was correlated with MMP9 and nodal metastasis. The survival rate was much lower in patients with a higher TNM classification, stage, and a histology of SCC. EBER positivity was associated with a better prognosis in the Kaplan-Meier test, but had no prognostic value by Cox regression analysis. Loss of E-cadherin expression and nodal metastasis were also correlated with local recurrence and distant metastasis. Conclusion. EBV type and LMP1 variant had no significant influence on the clinicopathologic properties of tumor. However, there was a tendency toward a better survival in the EBV type B group. Histology and clinical staging were the two most important prognostic factors. © 2004 Wiley Periodicals, Inc. Head Neck26: 573,583, 2004 [source]


    CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis,

    HEPATOLOGY, Issue 4 2010
    Mirko Moreno Zaldivar
    Liver fibrosis is a major cause of morbidity and mortality worldwide. Platelets are involved in liver damage, but the underlying molecular mechanisms remain elusive. Here, we investigate the platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) as a molecular mediator of fibrotic liver damage. Serum concentrations and intrahepatic messenger RNA of CXCL4 were measured in patients with chronic liver diseases and mice after toxic liver injury. Platelet aggregation in early fibrosis was determined by electron microscopy in patients and by immunohistochemistry in mice. Cxcl4,/, and wild-type mice were subjected to two models of chronic liver injury (CCl4 and thioacetamide). The fibrotic phenotype was analyzed by histological, biochemical, and molecular analyses. Intrahepatic infiltration of immune cells was investigated by fluorescence-activated cell sorting, and stellate cells were stimulated with recombinant Cxcl4 in vitro. The results showed that patients with advanced hepatitis C virus,induced fibrosis or nonalcoholic steatohepatitis had increased serum levels and intrahepatic CXCL4 messenger RNA concentrations. Platelets were found directly adjacent to collagen fibrils. The CCl4 and thioacetamide treatment led to an increase of hepatic Cxcl4 levels, platelet activation, and aggregation in early fibrosis in mice. Accordingly, genetic deletion of Cxcl4 in mice significantly reduced histological and biochemical liver damage in vivo, which was accompanied by changes in the expression of fibrosis-related genes (Timp-1 [tissue inhibitor of matrix metalloproteinase 1], Mmp9 [matrix metalloproteinase 9], Tgf -, [transforming growth factor beta], IL10 [interleukin 10]). Functionally, Cxcl4,/, mice showed a strongly decreased infiltration of neutrophils (Ly6G) and CD8+ T cells into the liver. In vitro, recombinant murine Cxcl4 stimulated the proliferation, chemotaxis, and chemokine expression of hepatic stellate cells. Conclusion: The results underscore an important role of platelets in chronic liver damage and imply a new target for antifibrotic therapies. (HEPATOLOGY 2010.) [source]


    Increased tumor necrosis factor ,,converting enzyme activity induces insulin resistance and hepatosteatosis in mice,

    HEPATOLOGY, Issue 1 2010
    Loredana Fiorentino
    Tumor necrosis factor ,,converting enzyme (TACE, also known as ADAM17) was recently involved in the pathogenesis of insulin resistance. We observed that TACE activity was significantly higher in livers of mice fed a high-fat diet (HFD) for 1 month, and this activity was increased in liver > white adipose tissue > muscle after 5 months compared with chow control. In mouse hepatocytes, C2C12 myocytes, and 3T3F442A adipocytes, TACE activity was triggered by palmitic acid, lipolysaccharide, high glucose, and high insulin. TACE overexpression significantly impaired insulin-dependent phosphorylation of AKT, GSK3, and FoxO1 in mouse hepatocytes. To test the role of TACE activation in vivo, we used tissue inhibitor of metalloproteinase 3 (Timp3) null mice, because Timp3 is the specific inhibitor of TACE and Timp3,/, mice have higher TACE activity compared with wild-type (WT) mice. Timp3,/, mice fed a HFD for 5 months are glucose-intolerant and insulin-resistant; they showed macrovesicular steatosis and ballooning degeneration compared with WT mice, which presented only microvesicular steatosis. Shotgun proteomics analysis revealed that Timp3,/, liver showed a significant differential expression of 38 proteins, including lower levels of adenosine kinase, methionine adenosysltransferase I/III, and glycine N -methyltransferase and higher levels of liver fatty acid-binding protein 1. These changes in protein levels were also observed in hepatocytes infected with adenovirus encoding TACE. All these proteins play a role in fatty acid uptake, triglyceride synthesis, and methionine metabolism, providing a molecular explanation for the increased hepatosteatosis observed in Timp3,/, compared with WT mice. Conclusion: We have identified novel mechanisms, governed by the TACE,Timp3 interaction, involved in the determination of insulin resistance and liver steatosis during overfeeding in mice. (HEPATOLOGY 2009.) [source]


    Roles of AKT and sphingosine kinase in the antiapoptotic effects of bile duct ligation in mouse liver,

    HEPATOLOGY, Issue 6 2005
    Yosuke Osawa
    Tumor necrosis factor (TNF) receptor, and Fas-mediated apoptosis are major death processes of hepatocytes in liver disease. Although antiapoptotic effects in the injured liver promote chronic hepatitis and carcinogenesis, scant information is known about these mechanisms. To explore this issue, we compared acute liver injury after TNF-, or anti-Fas antibody (Jo2) between livers from sham-operated mice and chronic injured liver via bile duct ligation (BDL). BDL inhibited hepatocyte apoptosis induced by TNF-, but not by Jo2. On the other hand, BDL inhibited the massive hemorrhage seen in livers treated with either TNF-, or Jo2. Inactivation of AKT blocked the antiapoptotic effect of BDL. Sphingosine kinase knockout mice also lost the antihemorrhagic effect of BDL and attenuated the antiapoptotic effects of BDL. In bile duct,ligated livers, hepatic stellate cells (HSCs) were activated and produced tissue inhibitor of metalloproteinase 1 in a sphingosine kinase (SphK)-1,dependent mechanism. In conclusion, BDL exerts antiapoptotic effects that appear to require activation of AKT in hepatocytes and SphK in HSCs.(HEPATOLOGY 2005;42:1320,1328.) [source]


    Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome

    HEPATOLOGY, Issue 4 2003
    Laurie D. Deleve M.D., Ph.D.
    This study examined the role of decreased nitric oxide (NO) in the microcirculatory obstruction of hepatic sinusoidal obstruction syndrome (SOS). SOS was induced in rats with monocrotaline. Monocrotaline caused hepatic vein NO to decrease by 30% at 24 hours and by 70% at 72 hours; this decrease persisted throughout late SOS. NG -nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase, exacerbated monocrotaline toxicity, whereas V-PYRRO/NO, a liver-selective NO donor prodrug, restored NO levels, preserved sinusoidal endothelial cell (SEC) integrity and sinusoidal perfusion as assessed by in vivo microscopy and electron microscopy, and prevented clinical and histologic evidence of SOS. NO production in vitro by SEC and Kupffer cells, the 2 major liver cell sources of NO, decreases largely in parallel with loss of cell viability after exposure to monocrotaline. Increased matrix metalloproteinase (MMP) activity increases early on in SOS and this increase in activity has been implicated in initiating SOS. Infusion of V-PYRRO-NO prevented the monocrotaline-induced increase in MMP-9. In conclusion, decreased hepatic NO production contributes to the development of SOS. Infusion of an NO donor preserves SEC integrity and prevents development of SOS. These findings show that a decrease in NO contributes to SOS by allowing up-regulation of MMP activity, loss of sinusoidal integrity, and subsequent disruption of sinusoidal perfusion. (Hepatology 2003;38:900,908). [source]