Metalloprotease Domain (metalloprotease + domain)

Distribution by Scientific Domains


Selected Abstracts


Regionalized expression of ADAM13 during chicken embryonic development

DEVELOPMENTAL DYNAMICS, Issue 3 2007
Juntang Lin
Abstract ADAMs are a family of membrane proteins possessing a disintegrin domain and a metalloprotease domain, which have functions in cell,cell adhesion, cell,matrix adhesion, and protein shedding, respectively. ADAMs are involved in morphogenesis and tissue formation during embryonic development. In the present study, chicken ADAM13 was cloned and identified, and its expression was investigated by semiquantitative reverse transcriptase-polymerase chain reaction and in situ hybridization during chicken embryonic development. Our results show that ADAM13 expression is temporally and spatially regulated in chicken embryos. At early developmental stages, ADAM13 is expressed in the head mesenchyme, which later develops into the craniofacial skeleton, in the branchial arches, and in the meninges surrounding the brain. Furthermore, ADAM13 mRNA was also detected in several tissues and organs, such as the somites and their derived muscles, the meninges surrounding the spinal cord, the dorsal aorta, the developing kidney, and several digestive organs. Developmental Dynamics 236:862,870, 2007. © 2007 Wiley-Liss, Inc. [source]


Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain

MOLECULAR MICROBIOLOGY, Issue 6 2008
Nicholas N. Nickerson
Summary The Staphylococcus aureus proteolytic cascade consists of a metalloprotease aureolysin (Aur), which activates a serine protease zymogen proSspA, which in turn activates the SspB cysteine protease. As with other M4 metalloproteases, including elastase of Pseudomonas aeruginosa, the propeptide of proAur contains an N-terminal fungalysin-thermolysin-propeptide (FTP) domain. Autocatalytic activation of proAur was initiated by processing at T85,L86 in the FTP domain. This differed from the mechanism described for proElastase, where the FTP domain has an RY motif in place of TL86, and processing occurred at the junction of the propeptide and metalloprotease domains, which remained as an inactive complex during passage across the outer membrane. When TL86 in the FTP domain was replaced with RY, an intact N-terminal propeptide was secreted, but the M4 metalloprotease domain was degraded. Consequently, this segment of the FTP domain promotes intramolecular processing of proAur while bestowing a chaperone function, but discourages processing within the FTP domain of proElastase, where activation must be co-ordinated with passage across a second membrane. We conclude that the FTP domain of proAur is adapted to facilitate a rapid autocatalytic activation mechanism, consistent with the role or proAur as initiator of the staphylococcal proteolytic cascade. [source]


Novel metalloprotease,disintegrin, meltrin , (ADAM35), expressed in epithelial tissues during chick embryogenesis

DEVELOPMENTAL DYNAMICS, Issue 3 2004
Mitsuko Watabe-Uchida
Abstract Members of the ADAM (adisintegrin and metalloprotease) family are involved in fertilization, morphogenesis, and pathogenesis. Their metalloprotease domains mediate limited proteolysis, including ectodomain shedding of membrane-anchored growth factors and intercellular-signaling proteins, and their disintegrin domains play regulatory roles in cell adhesion and migration. In screening for cDNAs encoding chicken ADAM proteins expressed during muscle development, we identified Meltrin , as a novel member of this family. To elucidate its functions, we investigated its expression during development by using antibodies raised against its protease domain. In the somites, Meltrin , protein was specifically expressed in the myotomal cells, which delaminate from the dermomyotome to form epithelial sheets. It was also found in the surface ectoderm, lens placodes, otic vesicles, and the gut epithelia. Basolateral localization of Meltrin , in these epithelial cells suggests its unique roles in the organization of the epithelial tissues and development of the sensory organs and the gut. Developmental Dynamics 230:557,568, 2004. © 2004 Wiley-Liss, Inc. [source]


Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain

MOLECULAR MICROBIOLOGY, Issue 6 2008
Nicholas N. Nickerson
Summary The Staphylococcus aureus proteolytic cascade consists of a metalloprotease aureolysin (Aur), which activates a serine protease zymogen proSspA, which in turn activates the SspB cysteine protease. As with other M4 metalloproteases, including elastase of Pseudomonas aeruginosa, the propeptide of proAur contains an N-terminal fungalysin-thermolysin-propeptide (FTP) domain. Autocatalytic activation of proAur was initiated by processing at T85,L86 in the FTP domain. This differed from the mechanism described for proElastase, where the FTP domain has an RY motif in place of TL86, and processing occurred at the junction of the propeptide and metalloprotease domains, which remained as an inactive complex during passage across the outer membrane. When TL86 in the FTP domain was replaced with RY, an intact N-terminal propeptide was secreted, but the M4 metalloprotease domain was degraded. Consequently, this segment of the FTP domain promotes intramolecular processing of proAur while bestowing a chaperone function, but discourages processing within the FTP domain of proElastase, where activation must be co-ordinated with passage across a second membrane. We conclude that the FTP domain of proAur is adapted to facilitate a rapid autocatalytic activation mechanism, consistent with the role or proAur as initiator of the staphylococcal proteolytic cascade. [source]