Home About us Contact | |||
Metallic Implants (metallic + implant)
Selected AbstractsReplacement of the medial tibial plateau by a metallic implant in a goat modelJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2010Roel J.H. Custers Abstract The purposes of the present study were to explore the surgical possibilities for replacement of the medial tibial plateau by a metallic implant in a large animal model and to examine the implications for the opposing cartilage. In six goats, the medial tibial plateau of the right knee was replaced by a cobalt,chromium implant, using polymethylmethacrylate bone cement for fixation. The unoperated left knee served as a control. At 26 weeks after surgery, the animals were killed, and the joints evaluated macroscopically. Cartilage quality was analyzed macroscopically and histologically. Glycosaminoglycan content, synthesis, and release were measured in tissue and medium. All animals were able to move and load the knees without any limitations. Macroscopic articular evaluation scores showed worsening 26 weeks after inserting the implant (p,<,0.05). Macroscopic and histologic scores showed more cartilage degeneration of the opposing medial femoral condyle in the experimental knee compared to the control knee (p,<,0.05). Higher glycosaminoglycan synthesis was measured at the medial femoral condyle cartilage in the experimental knees (p,<,0.05). This study shows that the medial tibial plateau can be successfully replaced by a cobalt,chromium implant in a large animal model. However, considerable femoral cartilage degeneration of the medial femoral condyle was induced, suggesting that care must be taken introducing hemiarthroplasty devices in a human clinical setting for the treatment of postmeniscectomy cartilage degeneration of the medial tibial plateau. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:429,435, 2010 [source] Effect of oral diacerein (DAR) in an experimental hip chondrolysis modelJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2006Humberto Ken Kitadai Abstract We aimed to reproduce the articular cartilage structural changes in a joint exposed to a metallic implant as in the adolescent pinned hip with persistent joint penetration and secondly, to test the effect of an interleukin inhibitor, diacerein (DAR) in the ensuing articular cartilage lesion. Twenty immature beagles were submitted to a surgical K-wire implantation in the hip with the material left in the joint space for 6 months. Twelve animals were sacrificed for histological and biochemical tests. Eight animals were sacrificed at 10 months (half of them treated with DAR) and analyzed by scanning electron microscopy (SEM) and biochemistry of the articular cartilage. Preoperative and monthly C3 and C4 complement and immunoglobulins serum levels were determined. The histological and the electrophoretic profile changes were significative at 6 months. At 10 months the migration profile (CaCl2) recovered to normal levels in the operated hip and the SEM scores for the acetabulum were similar to the non operated control hip after treatment. The serum level of IgA was elevated at the 4th and 6th month postoperatively. The persistence of a metallic implant resulted in degenerative changes parallel to that described for hip chondrolysis as a complication of in-situ pinning; and the cartilage lesion improved with DAR treatment. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1240,1248, 2006 [source] Safety of, and biological and functional response to, a novel metallic implant for the management of focal full-thickness cartilage defects: Preliminary assessment in an animal model out to 1 yearJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2006Carl A. Kirker-Head Abstract Focal full-thickness cartilage lesions of the human medial femoral condyle (MFC) can cause pain and functional impairment. Affected middle-aged patients respond unpredictably to existing treatments and knee arthroplasty may be required, prompting risk of revision. This study assesses the safety of, and biological and functional response to, a metallic resurfacing implant which may delay or obviate the need for traditional arthroplasty. The anatomic contour of the surgically exposed MFC of six adult goats was digitally mapped and an 11 mm diameter full-thickness osteochondral defect was created. An anchor-based Co,Cr resurfacing implant, matching the mapped articular contour, was implanted. Each goat's contralateral unoperated femorotibial joint was used as a control. Postoperative outcome was assessed by lameness examination, radiography, arthroscopy, synoviocentesis, necropsy, and histology up to 26 (n,=,3) or 52 (n,=,3) weeks. By postoperative week (POW) 4, goats demonstrated normal range of motion, no joint effusion, and only mild lameness in the operated limb. By POW 26 the animals were sound with only occasional very mild lameness. Arthroscopy at POW 14 revealed moderate synovial inflammation and a chondral membrane extending centrally across the implant surface. Radiographs at POWs 14 to 52 implied implant stability in the operated joints, as well as subchondral bone remodeling and mild exostosis formation in the operated and contralateral unoperated joints of some goats. By POW 26, histology revealed new trabecular bone abutting the implant. At POWs 26 and 52 MFC cartilage was metachromatic and intact in the operated and unoperated femorotibial joints. Proximal tibiae of some operated and unoperated limbs demonstrated limited subchondral bone remodeling and foci of articular cartilage fibrillation and thinning. The chondral membrane crossing the prosthesis possessed a metachromatic matrix containing singular and clustered chondrocytes. Our data imply the safety, biocompatibility, and functionality of the implant. Focal articular damage was documented in the operated joints at POWs 26 and 52, but lesions were much reduced over those previously reported in untreated defects. Expanded animal or preclinical human studies are justified. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source] Microstructural and Mechanical Investigations on Porcelain-Fused-to-Metal in Multilayer SystemADVANCED ENGINEERING MATERIALS, Issue 4 2010Adele Carradò Results on porcelain-fused-to-metal (PFM) technique of ceramic films for biomedical applications on metal substrate are reported. The coating of metallic implants with bio-ceramic films (glassy and opaque ceramic) was proposed to be a solution for combining the mechanical properties of the metallic material with the bioactive character of the ceramic layer, leading to a better integration of the entire implant. The aim of this paper is to determine a stress field distribution by a non-destructive method as high-energy synchrotron X-ray diffraction in energy dispersive in the metal and glass ceramic bulk as well as at metal,opaque ceramic interface in PFM three layers sample. Tensile stresses were found in palladium substrate and compressive state in glass ceramic coating. Moreover thermal stresses induced by PFM coating at the interfaces were calculated by analytical mathematical model, confirming that the stresses induced, due to the selection of the materials, are low. Finally, the micro-structural and chemical characteristics of glassy and opaque bio-ceramic coatings on palladium alloy substrate were investigated and no inter-diffusion area between metal and ceramic could be detected as well as non-homogeneity in the interface ceramic. [source] Electrochemically Deposited Ca(OH)2 Coatings as a Bactericidal and Osteointegrative Modification of Ti ImplantsADVANCED ENGINEERING MATERIALS, Issue 3 2009Claus Moseke Coating of metallic implants with CaP is a common method of improving osseointegration of the device. In this study Ca(OH)2 coatings are analyzed combining the advantage of initial bacteriocidity with,after conversion of the hydroxide to hydroxyapatite in physiological media,good osteoconductivity. [source] Influences of passivating elements on the corrosion and biocompatibility of super stainless steelsJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2008Young-Ran Yoo Abstract Biometals need high corrosion resistance since metallic implants in the body should be biocompatible and metal ion release should be minimized. In this work, we designed three kinds of super stainless steel and adjusted the alloying elements to obtain different microstructures. Super stainless steels contain larger amounts of Cr, Mo, W, and N than commercial alloys. These elements play a very important role in localized corrosion and, thus, their effects can be represented by the "pitting resistance equivalent number (PREN)." This work focused on the behavior which can arise when the bare surface of an implant in the body is exposed during walking, heavy exercise, and so on. Among the experimental alloys examined herein, Alloy Al and 316L stainless steels were mildly cytotoxic, whereas the other super austenitic, duplex, and ferritic stainless steels were noncytotoxic. This behavior is primarily related to the passive current and pitting resistance of the alloys. When the PREN value was increased, the passivation behavior in simulated body solution was totally different from that in acidic chloride solution and, thus, the Cr2O3/Cr(OH)3 and [Metal oxide]/[Metal + Metal oxide] ratios of the passive film in the simulated body solution were larger than those in acidic chloride solution. Also, the critical current density in simulated body solution increased and, thus, active dissolution may induce metal ion release into the body when the PREN value and Ni content are increased. This behavior was closely related to the presence of EDTA in the simulated body solution. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] Biodegradable poly(D,L -lactide) coating of implants for continuous release of growth factorsJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 4 2001G. Schmidmaier Abstract Local application of growth factors like insulin like growth factor-I (IGF-I) and transforming growth factor-beta 1 (TGF-,1) from a biodegradable thin layer of poly(D,L -lactide) (PDLLA) coated implants could stimulate fracture healing. A new "cold coating technique" for metallic implants was established to produce a biodegradable coating with a high mechanical stability that provides a continuous release of incorporated growth factors. The properties of this bioactive coating were investigated in vitro and in vivo. Scanning electron microscope analysis revealed a coating thickness of in average 14.8 ,m on titanium and 10.7 ,m on steel wires. Intramedullary implantation and extraction experiments depicted a loss of PDLLA coating from titanium and steel implants of less than 5%. After explantation of the implants, the coating displayed a complete and regular layer without any defects of PDLLA uncovering the metallic surface. Smear tests demonstrate that the coating can be performed under sterile conditions. The PDLLA depicted a reduction of about 8% within 6 weeks in vitro and in vivo. The growth factors were incorporated in a stable form and demonstrated a loss of stability of less than 3% within 42 days and less than 5% within one year. In an elution experiment, 54% IGF-I and 48% TGF-,1 were released within the first 48 h. After 42 days, 76% of IGF-I and 71% of TGF-,1 were detected in the elution fluid by ELISA. Comparable results were obtained in the in vivo experiments after 42 days. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 449,455, 2001 [source] DES Design: Theoretical Advantages and Disadvantages of Stent Strut Materials, Design, Thickness, and Surface CharacteristicsJOURNAL OF INTERVENTIONAL CARDIOLOGY, Issue 2009F.A.C.C., F.A.H.A., F.S.C.A.I., STEVEN R. BAILEY M.D. Endovascular stents have historically been manufactured using metals and metal composites. While metallic implants in nonvascular locations have been biologically well tolerated, endovascular implants have been plagued by neointimal proliferation resulting in recurrent stenosis. Using prior in vitro and in vivo outcomes, novel research projects are under way to improve vascular implants. This review summarizes prior investigations of metal stents, analyzes new biopolymeric systems, and examines emerging technologies and manufacturing processes for surface modifications as well as bioabsorbable stent materials. Limitations of these new materials and manufacturing processes will be discussed along with potential new biologic applications. [source] Hypoxia-like effect of Cobalt Chromium alloy micro particles on fibroblasts in vitroJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2010Bernadette K. Madathil Abstract Periprosthetic osteolysis leading to asceptic loosening remains the primary cause of failure of joint replacement. Although many inflammatory cell types have been implicated, the exact pathomechanisms of asceptic loosening have not been delineated. In the present study we have adopted a proteomic approach to elucidate the initial signals that are expressed to particulate material, using an in vitro cell culture system. Human lung fibroblasts MRC-5 were cultured with Cobalt Chromium (CoCr ASTM F-75, 1,7,µm) particles. Cells were harvested after 72,h incubation and total cellular proteins extracted for downstream analysis via 2D Gel Electrophoresis and tandem mass spectrometry using MALDI-TOF-TOF-MS. Thirteen protein spots showed greater than twofold increase, following 72,h incubation of fibroblast with CoCr particles. Four of these proteins were identified by tandem mass spectrometry. These were Annexin II, Pyruvate kinase, Triose phosphate isomerase, and N-myc downstream regulated gene 1 protein. Cobalt is a hypoxia mimicking agent and N-myc downstream regulated gene 1 protein, Triose phosphate isomerase, Pyruvate kinase, and Annexin II are important hypoxia regulated gene products that are found to be over expressed in cellular oxidative stress response. Our data indicates that exposure of fibroblast to CoCr alloy induces the transition of these cells into a hypoxia like state and oxidative stress even in normoxic culture conditions. The study reflects the possibility of the presence of a hypoxic environment in the periprosthetic tissue surrounding metallic implants. Published by Wiley Periodicals, Inc. J Orthop Res 28:1360,1367, 2010 [source] Corrosion aspects of metallic implants , An overviewMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 11 2008A. Balamurugan Abstract The ability to replace or augment diseased body parts totally or partially has improved both the quality and life span of human population. The decline in surgical risks during recent decades has encouraged the development of more complex procedures for prosthetic implantation. Additionally, a variety of extracorporeal devices, such as the heart, lung and blood dialysis machines are used routinely, but these prosthetic elements have several limitations. Hence, research projects are currently underway to overcome the limitations of synthetic materials by developing formulations with varying properties, such as asymptomatic, long-term function in the human physiological environment, etc., to meet the needs of biomedical surgeons. This review focuses on the several biomaterials corrosion and its measures to prevent corrosion. [source] |