Metal Adsorption (metal + adsorption)

Distribution by Scientific Domains


Selected Abstracts


Using Chitosan as a Nucleation Agent in Thermoplastic Foams for Heavy Metal Adsorption

MACROMOLECULAR SYMPOSIA, Issue 1 2009
Milton O. Vázquez
Abstract Thermoplastics/chitosan-powder composite foams were prepared by extrusion using azodicarbonamide (ACA) as chemical blowing agent. The effect of chitosan content on morphology (cell size, nucleation density and foam density) of the foams was studied. Chitosan particles are located on the bubbles periphery. Morphological quantification showed that foam cell size decreased and cell population increased with addition of chitosan into polymeric matrix from 1 to 10%. Further, optimum chitosan content was obtained for each polymer. Polymers foamed with chitosan were tested as a chelating resin to adsorb chromium (Cr VI) from different concentration solutions. [source]


Stripping Voltammetry at Microdisk Electrode Arrays: Theory

ELECTROANALYSIS, Issue 24 2009

Abstract Anodic stripping voltammetry (ASV) is an extremely powerful tool for detection of metal ions in solution through a two step process of preconcentration of the metal at the electrode surface, followed by electrodissolution. The second phase produces an electroanalytical response proportional to the amount of material deposited in the first phase. This paper utilizes theory to explore the electrochemical signals produced when considering ASV at a microelectrode or ultramicroelectrode arrays. The theory outlined is applicable mostly to thin mercury film absorption and metal adsorption. [source]


Creating metal-spiked bed sediments: A case study from Orewa estuary, New Zealand,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2008
Xueqiang Lu
Abstract Spiking sediments to achieve target concentrations of heavy metal pollutants is a key step in sediment toxicity tests. It is difficult, however, to ensure that metals in an artificially spiked sediment will behave naturally. A method has been developed in the present study to create Cu-, Pb-, and Zn-spiked sediments in which naturally occurring adsorption onto sediment surfaces is the dominant process binding the metals and in which precipitation of readily redissolved minerals and other metal-bearing phases (artifacts of the spiking procedure) are avoided. Uncontaminated bed sediment from an intertidal mudflat in the Orewa estuary, New Zealand, was characterized in terms of existing metal content, optimal adsorption pH, and adsorption capacity. Competitive adsorption between Cu and Pb as well as complexation by seawater anions only slightly affected metal adsorption from seawater. Surface complexation modeling indicated that iron oxide surfaces in the sediment likely were dominating metal adsorption processes. Spiking experiments were designed using these established adsorption characteristics but with significantly higher (>100-fold) concentrations of sediments and dissolved metals and a liquid to solid (L:S) ratio of approximately 5.5. An equilibration time of at least 36 h was required to achieve a reproducible target metal concentration, which could be reliably predicted from the L:S ratio and the initial metal concentration in the spiking solution. Adsorption equilibrium remained the process governing metal binding to the sediment, and no indication was observed that the adsorption capacity of the sediment had been exceeded or that additional metal-bearing phases had been formed. [source]


Development of fluoroapatite chromatography for the purification of monoclonal antibody

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 17-18 2010
Paul K. Ng
Abstract Monoclonal antibody was purified from tissue culture fluid using ceramic fluoroapatite chromatography. Efficiency of the capture step was shown to be sensitive to pH and phosphate concentration. More than 90% of host cell proteins were removed by ceramic fluoroapatite chromatography. Studies regarding pH control and metal adsorption are presented. [source]