Metabolic Pathways (metabolic + pathway)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Metabolic Pathways

  • central metabolic pathway
  • different metabolic pathway
  • major metabolic pathway


  • Selected Abstracts


    Cybernetic Modeling and Regulation of Metabolic Pathways in Multiple Steady States of Hybridoma Cells

    BIOTECHNOLOGY PROGRESS, Issue 5 2000
    Maria Jesus Guardia
    Hybridoma cells utilize a pair of complementary and partially substitutable substrates, glucose and glutamine, for growth. It has been shown that cellular metabolism shifts under different culture conditions. When those cultures at different metabolic states are switched to a continuous mode, they reach different steady states under the same operating conditions. A cybernetic model was constructed to describe the complementary and partial substitutable nature of substrate utilization. The model successfully predicted the metabolic shift and multiple steady-state behavior. The results are consistent with the experimental observation that the history of the culture affects the resulting steady state. [source]


    Metabolic pathway of magnetized fluid-induced relaxation effects on heart muscle

    BIOELECTROMAGNETICS, Issue 8 2005
    Gayane Ayrapetyan
    Abstract The effect of magnetized physiological solution (MPS) on isolated, perfused snail heart muscle contractility, 45Ca uptake and intracellular level of cAMP, and cGMP was studied. The existence of the relaxing effect of MPS on heart muscle at room temperature (22 °C) and its absence in cold medium (4 °C) was shown. The MPS had a depressing effect on 45Ca uptake by muscles and intracellular cAMP content and an elevating effect on intracellular cGMP level. It is suggested that the relaxing effect of MPS on heart muscle is due to the decrease of intracellular Ca ions as the result of activation of cGMP-dependent Ca efflux. The MPS induced decrease of intracellular cAMP content can be considered as a consequence of intracellular Ca loss, leading to the Na,+,K-ATPase reactivation, and causing the decrease of the intracellular level of ATP, serving as a substrate and positive modulator of cyclase activity. Bioelectromagnetics © 2005 Wiley-Liss, Inc. [source]


    Ischaemic preconditioning is related to decreasing levels of extracellular adenosine that may be metabolically useful in the at-risk myocardium: an experimental study in the pig

    ACTA PHYSIOLOGICA, Issue 1 2010
    A. Waldenström
    Abstract Aim:, ,Pre-treatment' with short repetitive periods of ischaemia (ischaemic preconditioning) has proved to be a powerful mechanism for modification of the extent of myocardial damage following acute coronary artery occlusion. The exact mechanism of protection induced by ischaemic preconditioning is not known. We herewith put forward a contributing component for protection with preconditioning involving a shift in the adenylate kinase (AK) equilibrium reaction in favour of adenosine triphosphate (ATP) formation. Methods:, A coronary artery was occluded in anaesthetized thoracotomized pigs to induce ischaemic preconditioning as well as a longer period of ischaemia. Microdialysis probes were inserted in ischaemic and control myocardium and were infused with 14C- adenosine with two different specific activities. 14C-lactate was identified and measured in the effluent. Results:,14C-adenosine was taken up by non-preconditioned and preconditioned myocardium during ischaemia. Significantly increased levels of 14C-lactate were recovered in preconditioned myocardium. 14C-adenosine with high specific activity resulted in a specific activity of lactate that was 2.7 times higher than that of lactate after administration of 14C-adenosine with low specific activity. Mass spectrography verified the identity of 14C-lactate. Conclusions:, Preconditioning up-regulates a new metabolic pathway (starting with 5,-nucleotidase and ending up with lactate) resulting in ATP formation in the micromolar range on top of another effect terminating in a useful shift in the AK equilibrium reaction in favour of ATP generation in the millimolar range. Although the up-regulation of the purine nucleoside phosphorylase pathway is clearly demonstrated, its biological relevance remains to be proved. [source]


    Exploring the Phospholipid Biosynthetic Pathways of Aspergillus fumigatus by Computational Genome Analysis

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 6 2005
    H. Do
    Abstract Aspergillus fumigatus causes a wide range of diseases that include mycotoxicosis, allergic reactions and systematic diseases (invasive aspergillosis) with high mortality rates. In recent years, considerable progress in the genome sequencing of this fungus has been made by an international consortium, which includes the Wellcome Trust Sanger Institute (UK) and the Institute for Genome Research (USA). A tenfold whole genome shotgun sequence assembly of A. fumigatus has been made publicly available. In this study, it was attempted to identify the genes related to the phospholipid biosynthesis from the A. fumigatus genome by a gene prediction program (GlimmerM) and to reconstruct the metabolic pathway for phospholipids of A. fumigatus. Fifteen genes related to phospholipid pathway were identified in the A. fumigatus genomic sequence. The open reading frames predicted by GlimmerM showed a high amino acid sequence similarity with the other fungal phospholipid biosynthetic genes and well-conserved functional domains. The obtained results also demonstrated that the reconstructed pathway of A. fumigatus in phospholipid biosynthesis was very similar to that of other fungi such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, and Neurospora crassa. Therefore it is postulated that the antifungal drugs targeted for the biosynthesis of phospholipids could also be effective against A. fumigatus. [source]


    Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia

    ENVIRONMENTAL MICROBIOLOGY, Issue 3 2003
    Tina Andrea Müller
    Summary The genetic structure of two Ralstonia spp., strain JS705 and strain JS745, isolated from the same groundwater aquifer, was characterized with respect to the degradation capacities for toluene and chlorobenzene degradation. Cosmid library construction, cloning, DNA sequencing and mating experiments indicated that the genes for chlorobenzene degradation in strain JS705 were a mosaic of the clc genes, previously described for Pseudomonas sp. strain B13, and a 5 kb fragment identical to strain JS745. The 5 kb fragment identical to both JS705 and JS745 was flanked in JS705 by one complete and one incomplete insertion (IS) element. This suggested involvement of the IS element in mobilizing the genes from JS745 to JS705, although insertional activity of the IS element in its present configuration could not be demonstrated. The complete genetic structure for chlorobenzene degradation in strain JS705 resided on a genomic island very similar to the clc element (Ravatn, R., Studer, S., Springael, D., Zehnder, A.J., van der Meer, J.R. 1998. Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J Bacteriol 180: 4360,4369). The unique reconstruction of formation of a metabolic pathway through the activity of IS elements and a genomic island in the chlorobenzene-degrading strain JS705 demonstrated how pathway evolution can occur under natural conditions in a few ,steps'. [source]


    THE ADDITIVE GENETIC VARIANCE AFTER BOTTLENECKS IS AFFECTED BY THE NUMBER OF LOCI INVOLVED IN EPISTATIC INTERACTIONS

    EVOLUTION, Issue 4 2003
    Yamama Naciri-Graven
    Abstract We investigated the role of the number of loci coding for a neutral trait on the release of additive variance for this trait after population bottlenecks. Different bottleneck sizes and durations were tested for various matrices of genotypic values, with initial conditions covering the allele frequency space. We used three different types of matrices. First, we extended Cheverud and Routman's model by defining matrices of "pure" epistasis for three and four independent loci; second, we used genotypic values drawn randomly from uniform, normal, and exponential distributions; and third we used two models of simple metabolic pathways leading to physiological epistasis. For all these matrices of genotypic values except the dominant metabolic pathway, we find that, as the number of loci increases from two to three and four, an increase in the release of additive variance is occurring. The amount of additive variance released for a given set of genotypic values is a function of the inbreeding coefficient, independently of the size and duration of the bottleneck. The level of inbreeding necessary to achieve maximum release in additive variance increases with the number of loci. We find that additive-by-additive epistasis is the type of epistasis most easily converted into additive variance. For a wide range of models, our results show that epistasis, rather than dominance, plays a significant role in the increase of additive variance following bottlenecks. [source]


    Increased glucose metabolism and ATP level in brain tissue of Huntington's disease transgenic mice

    FEBS JOURNAL, Issue 19 2008
    Judit Oláh
    Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by multifarious dysfunctional alterations including mitochondrial impairment. In the present study, the formation of inclusions caused by the mutation of huntingtin protein and its relationship with changes in energy metabolism and with pathological alterations were investigated both in transgenic and 3-nitropropionic acid-treated mouse models for HD. The HD and normal mice were characterized clinically; the affected brain regions were identified by immunohistochemistry and used for biochemical analysis of the ATP-producing systems in the cytosolic and the mitochondrial compartments. In both HD models, the activities of some glycolytic enzymes were somewhat higher. By contrast, the activity of glyceraldehyde-3-phosphate dehydrogenase was much lower in the affected region of the brain compared to that of the control. Paradoxically, at the system level, glucose conversion into lactate was enhanced in cytosolic extracts from the HD brain tissue, and the level of ATP was higher in the tissue itself. The paradox could be resolved by taking all the observed changes in glycolytic enzymes into account, ensuing an experiment-based detailed mathematical model of the glycolytic pathway. The mathematical modelling using the experimentally determined kinetic parameters of the individual enzymes and the well-established rate equations predicted the measured flux and concentrations in the case of the control. The same mathematical model with the experimentally determined altered Vmax values of the enzymes did account for an increase of glycolytic flux in the HD sample, although the extent of the increase was not predicted quantitatively. This suggested a somewhat altered regulation of this major metabolic pathway in HD tissue. We then used the mathematical model to develop a hypothesis for a new regulatory interaction that might account for the observed changes; in HD, glyceraldehyde-3-phosphate dehydrogenase may be in closer proximity (perhaps because of the binding of glyceraldehyde-3-phosphate dehydrogenase to huntingtin) with aldolase and engage in channelling for glyceraldehyde-3-phosphate. By contrast to most of the speculation in the literature, our results suggest that the neuronal damage in HD tissue may be associated with increased energy metabolism at the tissue level leading to modified levels of various intermediary metabolites with pathological consequences. [source]


    A novel coupled enzyme assay reveals an enzyme responsible for the deamination of a chemically unstable intermediate in the metabolic pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d

    FEBS JOURNAL, Issue 15 2004
    Chika Orii
    2-Amino-5-carboxymuconic 6-semialdehyde is an unstable intermediate in the meta -cleavage pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. In vitro, this compound is nonenzymatically converted to 2,5-pyridinedicarboxylic acid. Crude extracts of strain 10d grown on 4-amino-3-hydroxybenzoic acid converted 2-amino-5-carboxymuconic 6-semialdehyde formed from 4-amino-3-hydroxybenzoic acid by the first enzyme in the pathway, 4-amino-3-hydroxybenzoate 2,3-dioxygenase, to a yellow compound (,max = 375 nm). The enzyme in the crude extract carrying out the next step was purified to homogeneity. The yellow compound formed from 4-amino-3-hydroxybenzoic acid by this purified enzyme and purified 4-amino-3-hydroxybenzoate 2,3-dioxygenase in a coupled assay was identified as 2-hydroxymuconic 6-semialdehyde by GC-MS analysis. A mechanism for the formation of 2-hydroxymuconic 6-semialdehyde via enzymatic deamination and nonenzymatic decarboxylation is proposed based on results of spectrophotometric analyses. The purified enzyme, designated 2-amino-5-carboxymuconic 6-semialdehyde deaminase, is a new type of deaminase that differs from the 2-aminomuconate deaminases reported previously in that it primarily and specifically attacks 2-amino-5-carboxymuconic 6-semialdehyde. The deamination step in the proposed pathway differs from that in the pathways for 2-aminophenol and its derivatives. [source]


    Chromokinetics of metabolic pathways

    FEBS JOURNAL, Issue 13 2004
    Jörg W. Stucki
    Some methods to study and intuitively understand steady-state flows in complicated metabolic pathways are discussed. For this purpose, a suitable decomposition of complex metabolic schemes into smaller subsystems is used. These independent subsystems are then interpreted as basic colors of a chromatic coloring scheme. The mixture of these basic colors allows an intuitive picture of how a steady state in a metabolic pathway can be understood. Furthermore, actions of drugs can be more easily investigated on this basis. An anaerobic variant of pyruvate metabolism in rat liver mitochondria is presented as a simple example. This experiment allows measurement of the percentage that each basic color contributes to the steady states resulting from different experimental conditions. Possible implementations of existing algorithms and rational design of new drugs are discussed. A mathematica program, based on a new algorithm for finding all basic colors of stoichiometric networks, is included. [source]


    Prediction of temporal gene expression

    FEBS JOURNAL, Issue 22 2002
    Metabolic optimization by re-distribution of enzyme activities
    A computational approach is used to analyse temporal gene expression in the context of metabolic regulation. It is based on the assumption that cells developed optimal adaptation strategies to changing environmental conditions. Time-dependent enzyme profiles are calculated which optimize the function of a metabolic pathway under the constraint of limited total enzyme amount. For linear model pathways it is shown that wave-like enzyme profiles are optimal for a rapid substrate turnover. For the central metabolism of yeast cells enzyme profiles are calculated which ensure long-term homeostasis of key metabolites under conditions of a diauxic shift. These enzyme profiles are in close correlation with observed gene expression data. Our results demonstrate that optimality principles help to rationalize observed gene expression profiles. [source]


    Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24

    FEBS JOURNAL, Issue 20 2000
    Toshiyuki Sakaki
    Human 25-hydroxyvitamin D3 (25(OH)D3) 24-hydroxylase (CYP24) cDNA was expressed in Escherichia coli, and its enzymatic and spectral properties were revealed. The reconstituted system containing the membrane fraction prepared from recombinant E. coli cells, adrenodoxin and adrenodoxin reductase was examined for the metabolism of 25(OH)D3, 1,,25(OH)2D3 and their related compounds. Human CYP24 demonstrated a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways towards both 25(OH)D3 and 1,,25(OH)2D3, whereas rat CYP24 showed almost no C-23 hydroxylation pathway [Sakaki, T. Sawada, N. Nonaka, Y. Ohyama, Y. & Inouye, K. (1999) Eur. J. Biochem. 262, 43,48]. HPLC analysis and mass spectrometric analysis revealed that human CYP24 catalyzed all the steps of the C-23 hydroxylation pathway from 25(OH)D3 via 23S,25(OH)2D3, 23S,25,26(OH)3D3 and 25(OH)D3 -26,23-lactol to 25(OH)D3 -26,23-lactone in addition to the C-24 hydroxylation pathway from 25(OH)D3 via 24R,25(OH)2D3, 24-oxo-25(OH)D3, 24-oxo-23S,25(OH)2D3 to 24,25,26,27-tetranor-23(OH)D3. On 1,,25(OH)2D3 metabolism, similar results were observed. These results strongly suggest that the single enzyme human CYP24 is greatly responsible for the metabolism of both 25(OH)D3 and 1,,25(OH)2D3. We also succeeded in the coexpression of CYP24, adrenodoxin and NADPH-adrenodoxin reductase in E. coli. Addition of 25(OH)D3 to the recombinant E. coli cell culture yielded most of the metabolites in both the C-23 and C-24 hydroxylation pathways. Thus, the E. coli expression system for human CYP24 appears quite useful in predicting the metabolism of vitamin D analogs used as drugs. [source]


    A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments

    GEOBIOLOGY, Issue 5 2008
    D. E. LAROWE
    ABSTRACT Anaerobic oxidation of methane (AOM) in anoxic marine sediments is a significant process in the global methane cycle, yet little is known about the role of bulk composition, temperature and pressure on the overall energetics of this process. To better understand the biogeochemistry of AOM, we have calculated and compared the energetics of a number of candidate reactions that microorganisms catalyse during the anaerobic oxidation of methane in (i) a coastal lagoon (Cape Lookout Bight, USA), (ii) the deep Black Sea, and (iii) a deep-sea hydrothermal system (Guaymas basin, Gulf of California). Depending on the metabolic pathway and the environment considered, the amount of energy available to the microorganisms varies from 0 to 184 kJ mol,1. At each site, the reactions in which methane is either oxidized to , acetate or formate are generally only favoured under a narrow range of pressure, temperature and solution composition , particularly under low (10,10 m) hydrogen concentrations. In contrast, the reactions involving sulfate reduction with H2, formate and acetate as electron donors are nearly always thermodynamically favoured. Furthermore, the energetics of ATP synthesis was quantified per mole of methane oxidized. Depending on depth, between 0.4 and 0.6 mol of ATP (mol CH4),1 was produced in the Black Sea sediments. The largest potential productivity of 0.7 mol of ATP (mol CH4),1 was calculated for Guaymas Basin, while the lowest values were predicted at Cape Lookout Bight. The approach used in this study leads to a better understanding of the environmental controls on the energetics of AOM. [source]


    Electron microscopy encounters with unusual thermophiles helps direct genomic analysis of Aciduliprofundum boonei

    GEOBIOLOGY, Issue 3 2008
    A.-L. REYSENBACH
    ABSTRACT Terry Beveridge's enthusiasm about the ingenuity of microorganisms has stimulated many new avenues of microbial research. One example where Terry's observations helped direct the scientific process was in the analysis of the draft genome of the thermoacidophilic archaeum, Aciduliprofundum boonei. This deep-sea vent heterotroph ferments peptides as its primary metabolic pathway, using numerous enzymes encoding for proteolytic or peptidolytic activities. An almost complete modified Embden,Meyerhof,Parnas pathway operates in the gluconeogenic direction. Terry was particularly intrigued by the S-layer and flagellum of A. boonei. Although only putative genes for the S-layer protein could be identified, several genes encoding for glycosyl transferases were located in the draft genome that could glycosylate the S-layer proteins and protect the proteins from the acidic environment. Furthermore, A. boonei possesses a unique organization to its flagellum genes and may represent a third organizational type within the Archaea. [source]


    The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations

    GEOBIOLOGY, Issue 3 2005
    K. O. KONHAUSER
    ABSTRACT During deposition of late Archean,early Palaeoproterozoic Precambrian banded iron formations (BIFs) the downward flux of ferric hydroxide (Fe(OH)3) and phytoplankton biomass should have facilitated microbial Fe(III) reduction. However, quantifying the significance of such a metabolic pathway in the Precambrian is extremely difficult, considering the post-depositional alteration of the rocks and the lack of ideal modern analogues. Consequently, we have very few constraints on the Fe cycle at that time, namely (i) the concentration of dissolved Fe(II) in the ocean waters; (ii) by what mechanisms Fe(II) was oxidized (chemical, photochemical or biological, the latter using either O2 or light); (iii) where the ferric hydroxide was precipitated (over the shelf vs. open ocean); (iv) the amount of phytoplankton biomass, which relates to the nutrient status of the surface waters; (v) the relative importance of Fe(III) reduction vs. the other types of metabolic pathways utilized by sea floor microbial communities; and (vi) the proportion of primary vs. diagenetic Fe(II) in BIF. Furthermore, although estimates can be made regarding the quantity of reducing equivalents necessary to account for the diagenetic Fe(II) component in Fe-rich BIF layers, those same estimates do not offer any insights into the magnitude of Fe(III) actually generated within the water column, and hence, the efficiency of Fe and C recycling prior to burial. Accordingly, in this study, we have attempted to model the ancient Fe cycle, based simply on conservative experimental rates of photosynthetic Fe(II) oxidation in the euphotic zone. We estimate here that under ideal growth conditions, as much as 70% of the biologically formed Fe(III) could have been recycled back into the water column via fermentation and organic carbon oxidation coupled to microbial Fe(III) reduction. By comparing the potential amount of biomass generated phototrophically with the reducing equivalents required for Fe(III) reduction and magnetite formation, we also hypothesize that another anaerobic metabolic pathway might have been utilized in the surface sediment to oxidize the fermentation by-products. Based on the premise that the deep ocean waters were anoxic, this role could have been fulfilled by methanogens, and maybe even methanotrophs that employed Fe(III) reduction. [source]


    Hyposialylation of neprilysin possibly affects its expression and enzymatic activity in hereditary inclusion-body myopathy muscle

    JOURNAL OF NEUROCHEMISTRY, Issue 3 2008
    Aldobrando Broccolini
    Abstract Autosomal recessive hereditary inclusion-body myopathy (h-IBM) is caused by mutations of the UDP- N -acetylglucosamine 2-epimerase/N -acetylmannosamine kinase gene, a rate-limiting enzyme in the sialic acid metabolic pathway. Previous studies have demonstrated an abnormal sialylation of glycoproteins in h-IBM. h-IBM muscle shows the abnormal accumulation of proteins including amyloid-, (A,). Neprilysin (NEP), a metallopeptidase that cleaves A,, is characterized by the presence of several N-glycosylation sites, and changes in these sugar moieties affect its stability and enzymatic activity. In the present study, we found that NEP is hyposialylated and its expression and enzymatic activity reduced in all h-IBM muscles analyzed. In vitro, the experimental removal of sialic acid by Vibrio Cholerae neuraminidase in cultured myotubes resulted in reduced expression of NEP. This was most likely because of a post-translational modification consisting in an abnormal sialylation of the protein that leads to its reduced stability. Moreover, treatment with Vibrio Cholerae neuraminidase was associated with an increased immunoreactivity for A, mainly in the form of distinct cytoplasmic foci within myotubes. We hypothesize that, in h-IBM muscle, hyposialylated NEP has a role in hampering the cellular A, clearing system, thus contributing to its abnormal accumulation within vulnerable fibers and possibly promoting muscle degeneration. [source]


    Stereoselective disposition of talinolol in man

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2002
    Michael Zschiesche
    Abstract The disposition of the ,-blocking drug talinolol is controlled by P-glycoprotein in man. Because talinolol is marketed as a racemate, we reevaluated the serum-concentration time profiles of talinolol of a previously published study with single intravenous (30 mg) and repeated oral talinolol (100 mg for 14 days) before and after comedication of rifampicin (600 mg per day for 9 days) in eight male healthy volunteers (age 22,26 years, body weight 67,84 kg) with respect to differences in the kinetic profiles of the two enantiomers S(,) talinolol and R(+) talinolol. Additionally, the metabolism of talinolol in human liver microsomes was examined. After oral administration, S(,) talinolol was slightly less absorbed and faster eliminated than R(+) talinolol. The absolute bioavailabilty of the R(+) enantiomer of talinolol was slightly but significantly higher than of its S(,) enantiomer. Coadministration of rifampicin further intensified this difference in the disposition of R(+) and S(,) talinolol (p,<,0.05). Formation of 4-trans hydroxytalinolol was the major metabolic pathway in human liver microsomes. All Clint values of S(,) were higher than of R(+) talinolol; 0.1 ,M ketoconazole inhibited the formation of all metabolites. In conclusion, the stereoselectivity of talinolol disposition is of minor importance, and most likely caused by presystemic biotransformation via CYP3A4. The less active R(+) talinolol might be suitable for phenotyping P-glycoprotein expression in man. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:303,311, 2002 [source]


    FLORIDOSIDE AS A CARBON PRECURSOR FOR THE SYNTHESIS OF CELL-WALL POLYSACCHARIDE IN THE RED MICROALGA PORPHYRIDIUM SP. (RHODOPHYTA),

    JOURNAL OF PHYCOLOGY, Issue 5 2002
    Shi-Yan Li
    Although red algae are known to be obligatory photoautotrophs, the red microalga Porphyridium sp. was shown to assimilate and metabolize floridoside. A pulse-chase experiment with [14C]floridoside showed that at the end of a 240-min pulse, 70% of total 14C-uptake by the cells remained in the floridoside fraction. To evaluate the assimilation of floridoside by Porphyridium sp. cells, we exposed Porphyridium sp. not only to [14C]floridoside but also to its constituents, [14C]glycerol and [14C]galactose, as compared with [14C]bicarbonate. The extent of incorporation of [14C] galactose by the Porphyridium sp. cells was insignificant (50,80 dpm·mL,1), whereas uptake of 14C from [14C]glycerol into the algal cells was evident (2.4 × 103 dpm·mL,1) after 60 min of the pulse. The pattern of 14C distribution among the major constituent sugars, xylose, glucose and galactose, of the labeled soluble polysaccharide was dependent on the 14C source. The relative content of [14C]galactose in the soluble polysaccharide was highest (28.8%) for [14C]floridoside-labeled culture and lowest (19.8%) for the [14C]glycerol-labeled culture. Upon incubation of [14C]floridoside with a crude extract of a cell-free system prepared from nonlabeled cells of Porphyridium sp., the label was indeed found to be incorporated into the sulfated polysaccharide. Our results suggested that the carbon metabolic pathway in Porphyridium sp. passes through the low molecular weight photoassimilatory product,floridoside,toward sulfated cell-wall polysaccharide production. [source]


    Mechanisms of protection by melatonin against acetaminophen-induced liver injury in mice

    JOURNAL OF PINEAL RESEARCH, Issue 3 2006
    Tatsuya Matsura
    Abstract:, The present study was performed to determine whether melatonin protects mouse liver against severe damage induced by acetaminophen (APAP) administration and where melatonin primarily functions in the metabolic pathway of APAP to protect mouse liver against APAP-induced injury. Treatment of mice with melatonin (50 or 100 mg/kg, p.o.) 8 or 4 hr before APAP administration (750 mg/kg, p.o.) suppressed the increase in plasma alanine aminotransferase and aspartate aminotransferase activities in a dose- and a time-dependent manner. Melatonin treatment (100 mg/kg, p.o.) 4 hr before APAP administration remarkably inhibited centrilobular hepatic necrosis with inflammatory cell infiltration and increases in hepatic lipid peroxidation and myeloperoxidase activity, an index of tissue neutrophil infiltration, as well as release of nitric oxide and interleukin-6 into blood circulation at 9 hr after APAP administration. However, melatonin neither affected hepatic reduced glutathione (GSH) content nor spared hepatic GSH consumption by APAP treatment. Moreover, pretreatment with melatonin 4 hr before APAP administration did not influence the induction of hepatic heat shock protein 70 (HSP70) by APAP and melatonin alone did not induce HSP70 in mouse liver. These results indicate that exogenously administered melatonin exhibits a potent hepatoprotective effect against APAP-induced hepatic damage probably downstream of the activity of cytochrome P450 2E1, which works upstream of GSH conjugation in the pathway of APAP metabolism, via its anti-nitrosative and anti-inflammatory activities in addition to its antioxidant activity. [source]


    Production of l -2,3-butanediol by a new pathway constructed in Escherichia coli

    LETTERS IN APPLIED MICROBIOLOGY, Issue 6 2004
    S. Ui
    Abstract Aims:, A metabolic pathway for l -2,3-butanediol (BD) as the main product has not yet been found. To rectify this situation, we attempted to produce l -BD from diacetyl (DA) by producing simultaneous expression of diacetyl reductase (DAR) and l -2,3-butanediol dehydrogenase (BDH) using transgenic bacteria, Escherichia coli JM109/pBUD-comb. Methods and Results:, The meso -BDH of Klebsiella pneumoniae was used for its DAR activity to convert DA to l -acetoin (AC) and the l -BDH of Brevibacterium saccharolyticum was used to reduce l -AC to l -BD. The respective gene coding each enzyme was connected in tandem to the MCS of pFLAG-CTC (pBUD-comb). The divided addition of DA as a source, addition of 2% glucose, and the combination of static and shaking culture was effective for the production. Conclusions:,l -BD (2200 mg l,1) was generated from 3000 mg l,1 added of DA, which corresponded to a 73% conversion rate. Meso -BD as a by-product was mixed by 2% at most. Significance and Impact of the Study:, An enzyme system for converting DA to l -BD was constructed with a view to using DA-producing bacteria in the future. [source]


    Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung

    ALLERGY, Issue 9 2010
    H.-G. Moon
    To cite this article: Moon H-G, Tae Y-M, Kim Y-S, Gyu Jeon S, Oh S-Y, Song Gho Y, Zhu Z, Kim Y-K. Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy 2010; 65: 1093,1103. Abstract Background:, Allergen-specific T-cell responses orchestrate airway inflammation, which is a characteristic of asthma. Recent evidence suggests that noneosinophilic asthma can be developed by mixed Th1 and Th17 cell responses when exposed to lipopolysaccharide (LPS)-containing allergens. Objective:, To evaluate the therapeutic or adverse effects of acetyl salicylic acid (ASA) on the expression of Th1-type and Th17-type inflammation induced by airway exposure to LPS-containing allergens. Methods:, Th1 + Th17 asthma and Th2 asthma mouse models were generated by intranasal sensitization with ovalbumin (OVA) and LPS and intraperitoneal sensitization with OVA and alum, respectively. Therapeutic or adverse effects were evaluated after allergen challenge using pharmacologic and transgenic approaches. Results:, Lung infiltration of eosinophils was enhanced in OVA/LPS-sensitized mice by ASA treatment, which was accompanied by the enhanced production of eotaxin. These changes were associated with the down-regulation of Th17 cell response, which was partly dependent on adenosine receptor A1 and A3 subtypes, but up-regulation of allergen-specific IL-13 production from T cells. Lung inflammation induced by LPS-containing allergen was markedly reduced in IL-13-deficient mice in the context of ASA treatment, but not without ASA. Meanwhile, adenosine levels in the lung were enhanced by ASA treatment. Moreover, lung infiltration of eosinophils induced by ASA treatment was reversed by co-treatment of a xanthine oxidase inhibitor (allopurinol). Conclusion:, These findings suggest that ASA changes Th17-type into Th2-type inflammation mainly via the adenosine and uric acid metabolic pathway in the lung. [source]


    Permethrin resistance ratios compared by two methods of testing nymphs of the German cockroach, Blattella germanica

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2000
    H. Ladonni
    Summary For the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae), the permethrin resistance ratio (RR) was assessed by topical application and by tarsal contact tests, using first-instar nymphs of five strains from Tehran, Iran. Each test was replicated three or four times with 10 nymphs aged 2,3 days; mortality was scored 24 h post-treatment. The reference susceptible strain showed LD50 permethrin 0.0175 ,l/nymph from topical application, KT50 of 8.41 min and LT50 of 12.82 following tarsal contact with permethrin 15 mg/m2. In four wild strains (F1 generation) the RR varied from 4.14 to 4.7 for mortality after topical application, from 4.2 to 6.45 for mortality and 17,27 for knockdown following tarsal contact tests. Hence, overall knockdown results gave much higher RRs than for mortality data. Resistance ratios based on both methods of treatment were very similar: one strain showed a slightly higher value by topical application (RR 4.6 vs. 4.2, i.e. 1.1-fold difference) whereas the other three strains gave slightly greater RR (1.2,1.4 fold) by tarsal contact. Resistance was abolished by cotreatment with the synergist piperonyl butoxide plus permethrin (ratio 3 : 1 required for full efficacy), indicating that mixed-function oxidases were inhibited as a major metabolic pathway in all four resistant strains. [source]


    Cover Picture , Mol.

    MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 9 2009
    Nutr.
    Regular issues provide a wide range of research and review articles covering all aspects of Molecular Nutrition & Food Research. Selected topics of issue 9 are: Efficacy of isoflavones in relieving vasomotor menopausal symptoms , a systematic review. Aromatic hydroxylation is a major metabolic pathway of the mycotoxin zearalenone in vitro HOP BITTER ACIDS EFFICIENTLY BLOCK INFLAMMATION INDEPENDENT OF GR,, PPAR, OR PPAR, EGCG inhibits protein synthesis, lipogenesis and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells [source]


    Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2006
    Antonio Medrano
    Abstract Incubation of boar spermatozoa in Krebs,Ringer,Henseleit medium with either 10 mM lactate or 10 mM citrate induced a fast and robust increase in the intracellular levels of ATP in both cases, which reached a peak after 30 sec of incubation. Utilization of both citrate and lactate resulted in the export of CO2 to the extracellular medium, indicating that both substrates were metabolized through the Krebs cycle. Incubation with citrate resulted in the generation of extracellular lactate, which was inhibited in the presence of phenylacetic acid. This indicates that lactate is produced through the pyruvate carboxylase step. In addition, there was also a significant increase in tyrosine phosphorylation induced by both citrate and lactate. Boar sperm has a sperm-specific isoform of lactate dehydrogenase (LDH), mainly located in the principal piece of the tail. Kinetic studies showed that boar sperm has at least two distinct LDH activities. The major activity (with an estimated Km of 0.51 mM) was located in the supernatants of sperm extracts. The minor LDH activity (with an estimated Km of 5.9 mM) was associated with the nonsoluble fraction of sperm extracts. Our results indicate that boar sperm efficiently metabolizes citrate and lactate through a metabolic pathway regulated by LDH. Mol. Reprod. Dev. © 2005 Wiley-Liss, Inc. [source]


    Methylenetetrahydrofolate Reductase Polymorphisms, Folate, and Cancer Risk: A Paradigm of Gene-Nutrient Interactions in Carcinogenesis

    NUTRITION REVIEWS, Issue 7 2000
    F.R.C.P.(C), Young-In Kim M.D.
    Recent epidemiologic studies suggest that common polymorphisms of methylenetetrahydrofolate reductase (MTHFR) with allele frequencies up to 35% in the general North American population may modulate cancer risk. In some cancers, folate and other nutrients involved in the MTHFR metabolic pathway appear to interact with MTHFR polymorphisms to further modify cancer risk. In carcinogenesis, MTHFR polymorphisms thus provide a paradigm of gene-nutrient interactions, an emerging and important topic in the field ofnutritisn and cancer. Furthermore, MTHFR polymorphisms and MTHFR-nutrient interactions provide an opportunity to identify an ideal target group of individuals, at high risk of developing cancer, for rational, effective, and safe chemoprevention using these nutrients. [source]


    Genetic polymorphisms in the metabolic pathway and non-Hodgkin lymphoma survival,

    AMERICAN JOURNAL OF HEMATOLOGY, Issue 1 2010
    Xuesong Han
    Metabolic pathway enzymes, such as Cytochrome P450 (CYP), glutathione S-transferase (GST), and N -acetyltransferases (NAT) are involved in activation and detoxification of environmental carcinogens as well as drug metabolism. We hypothesized that the genetic variations in such metabolic pathways may affect NHL prognosis and survival. Follow-up information of 496 female NHL incident cases diagnosed during 1996,2000 in Connecticut were abstracted from the Connecticut Tumor Registry in 2008; survival analyses were conducted by comparing the Kaplan-Meier curves, and hazard ratios (HR) were computed from the Cox Proportional Hazard models adjusting for demographic and tumor characteristics which were suggested by previous studies to be determinants of NHL survival. We identified six SNPs from four metabolism genes (CYP2E1, GSTP1, GSTT1, and NAT1) that were associated with NHL survival. Specifically, polymorphisms in GSTT1 were associated with follicular lymphoma survival; and polymorphisms in CYP2E1, GSTP1, and NAT1 were associated with survival of chronic lymphocytic leukemia/small lymphocytic lymphoma. Our study suggests that genetic polymorphisms in metabolic pathways may help improve the prediction of NHL survival and prognosis. Am. J. Hematol., 2010. © 2009 Wiley-Liss, Inc. [source]


    Effect of non-steroidal anti-inflammatory drugs on non-melanoma skin cancer incidence in the SKICAP-AK trial,

    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, Issue 4 2009
    Mary C. Clouser MPH, PhDc
    Abstract Recent studies link the prostaglandin metabolic pathway to skin carcinogenesis expanding possibilities that cyclooxygenase (COX) inhibitors may be utilized in non-melanoma skin cancer (NMSC) chemoprevention. Using data from a study of the efficacy of retinol supplementation on incidence of NMSC, we sought to determine the role of non-steroidal anti-inflammatory drugs (NSAIDs) in NMSC development. Cox proportional hazards models describe the relationship between NSAID use and time to first squamous cell carcinoma (SCC) or basal cell carcinoma (BCC) among participants categorized by use pattern: continuous users (use for length of study duration), new users (use for less than study duration), and non-users. For SCC and BCC, there was a statistically significant protective effect for participants who reported use for less than the study duration (HR,=,0.49, 95%CI 0.28,0.87 and HR,=,0.43, 95%CI 0.25,0.73, respectively). Categorical examination of NSAIDs (aspirin (ASA) vs. non-ASA NSAIDs) showed significant effects for BCC among those using non-ASA NSAIDs for less than the study duration (HR,=,0.33, 95%CI 0.13,0.80). For SCC and BCC, NSAID use of shorter duration and potentially more recent, was more protective than longer duration of use. These results are counter to the idea that longer duration of NSAID use is more protective. Additional investigations are needed into the role NSAIDs play in the chemoprevention of NMSC. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Fluorescence Kinetics of Protoporphyrin-IX Induced from 5-ALA Compounds in Rabbit Postballoon Injury Model for ALA-Photoangioplasty

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2008
    Oh-Choon Kwon
    Protoporphyrin IX (PpIX) is one of the photodynamically active substances that are endogenously synthesized in the metabolic pathway for heme as a precursor. Aminolevulinic acid-esters are more lipophilic than conventional 5-aminolevulinic acid (ALA) and some of them are currently being approved as new drugs for photodynamic diagnosis (PDD) and photodynamic therapy (PDT). In order to investigate the pharmacokinetics of ALA and ALA-ethyl ester (ALA-ethyl) in the atheromatous plaque and normal aortic wall of rabbit postballoon injured artery, each 60 mg kg,1 of ALA or ALA-ethyl was injected intravenously followed by serial detection of PpIX fluorescence of harvested arteries at 0,48 h post-injection. Maximum PpIX build-up in the atheromatous plaque was seen at 2 h after injecting ALA. In contrast, it occurred at 9 h after injecting ALA-ethyl. In addition, the selective build-up of ALA in the atheromatous plaque compared to normal vessel wall was much higher (10 times) than that of ALA-ethyl. The time of maximum fluorescence intensity of PpIX was employed as drug-light-interval for subsequent PDT treatment of the atheromatous plaque with 50,150 J cm,1 of light dose. Significant reduction in plaque was observed without damage of the medial wall at both groups, but smooth muscle cell (SMC) was still present in the media region below the PDT-treated atheromatous plaque. In conclusion, ALA may be a more effective compound for endovascular PDT treatment of the atheromatous plaque compared with ALA-ethyl based on their pharmacokinetics, but further optimization of PDT methodology remains to remove completely residual SMC in the media for preventing potential restenosis. [source]


    Iso,avonoids in the rutaceae family: 1.

    PHYTOCHEMICAL ANALYSIS, Issue 5 2004
    Fortunella obovata, Murraya paniculata, four Citrus species
    Abstract Several types of compounds with immunoreactivity similar to iso,avonoids were detected in water: ethanol extracts of leaves of Fortunella obovata Hort. ex Tanaka, Murraya paniculata Jack. and four Citrus species, namely C. aurantium L., C. grandis Osbeck, C. limonia Osbeck., and C. sinensis Osbeck (Rutaceae). The chromatographic mobilities of the immunoreactive substances were compared with those of authentic standards, revealing a spectrum of iso,avonoid metabolites in all plants studied. Aglycones as well as glycosides were recognized, namely daidzin, genistin, daidzein, genistein, formononetin, biochanin A, prunetin, and several incompletely characterized iso,avonoids. A subsequent HPLC-MS study veri,ed the identities of the main immunoreactive iso,avonoids and established the identities of several others, viz. glycitein, glycitin, ononin and sissotrin, including the malonylated and acetylated iso,avonoid glucosides. The estimated content of the individual immunoreactive entities ranged from a few µg to about 2 mg/kg (dry weight). It is concluded that the iso,avonoid metabolic pathway is present throughout the Rutaceae family. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Recuperative effect of Semecarpus anacardium linn. nut milk extract on carbohydrate metabolizing enzymes in experimental mammary carcinoma-bearing rats

    PHYTOTHERAPY RESEARCH, Issue S1 2002
    Venugopal Sujatha
    Abstract Semecarpus anacardium Linn. of the family Anacardiaceae has many applications in the Ayurvedic and Siddha systems of medicine. We have tested the antitumour activity of Semecarpus anacardium nut extract against experimental mammary carcinoma in animals. As there is a direct relationship between the proliferation of tumour cells and the activities of the glycolytic and gluconeogenic enzymes, we studied changes in the activities of enzymes involved in this metabolic pathway in the liver and kidney. The enzymes investigated were glycolytic enzymes, namely hexokinase, phosphoglucoisomerase, aldolase and the gluconeogenic enzymes, namely glucose-6-phosphatase and fructose-1,6-biphosphatase in experimental rats. A significant rise in glycolytic enzyme activities and a simultaneous fall in gluconeogenic enzyme activities were found in mammary carcinoma bearing rats. Drug administration returned these enzyme activities to their respective control activities. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Metabolite identification of a new antitumor agent icotinib in rats using liquid chromatography/tandem mass spectrometry

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2008
    Zhongmin Guan
    Icotinib, 4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-4-quinazoline, is a new antitumor agent. The metabolic pathway of icotinib in rats was studied using liquid chromatography/tandem mass spectrometry (LC/MSn) analysis. Full scan and selected ion monitoring modes were used to profile the possible metabolites of icotinib in rat urine, feces and bile samples. Four phase I metabolites (M1,M4) and two phase II metabolites (M5, M6) were detected and characterized. Multiple-stage mass spectrometry and nuclear magnetic resonance (NMR) spectrometry were employed to elucidate structures of metabolites. Icotinib was metabolized to open the crown ether ring to form the main phase I metabolites. During metabolism, a reactive metabolite was formed. Using semicarbazide as a trapping agent, an intermediate arising from opening of the crown ether ring was detected as an aldehyde product by LC/MS/MS. These data indicated that ring opening of the crown ether was triggered by hydroxylation at the 8,-position of the ring to form a hemiacetal intermediate, which was further oxidized or reduced. Finally, the metabolic pathway of icotinib in rats was proposed. Copyright © 2008 John Wiley & Sons, Ltd. [source]