Metabolic Body Weight (metabolic + body_weight)

Distribution by Scientific Domains

Selected Abstracts

Variance components due to direct genetic, maternal genetic and permanent environmental effect for growth and feed-efficiency traits in young male Japanese Black cattle

M. A. Hoque
Summary Variance components and genetic parameters were estimated using data recorded on 740 young male Japanese Black cattle during the period from 1971 to 2003. Traits studied were feed intake (FI), feed-conversion ratio (FCR), residual feed intake (RFI), average daily gain (ADG), metabolic body weight (MWT) at the mid-point of the test period and body weight (BWT) at the finish of the test (345 days). Data were analysed using three alternative animal models (direct, direct + maternal environmental, and direct + maternal genetic effects). Comparison of the log likelihood values has shown that the direct genetic effect was significant (p < 0.05) for all traits and that the maternal environmental effects were significant (p < 0.05) for MWT and BWT. The heritability estimates were 0.20 ± 0.12 for FI, 0.14 ± 0.10 for FCR, 0.33 ± 0.14 for RFI, 0.19 ± 0.12 for ADG, 0.30 ± 0.14 for MWT and 0.30 ± 0.13 for BWT. The maternal effects (maternal genetic and maternal environmental) were not important in feed-efficiency traits. The genetic correlation between RFI and ADG was stronger than the corresponding correlation between FCR and ADG. These results provide evidence that RFI should be included for genetic improvement in feed efficiency in Japanese Black breeding programmes. [source]

Estimates of genetic parameters for Boran, Friesian, and crosses of Friesian and Jersey with the Boran cattle in the tropical highlands of Ethiopia: milk production traits and cow weight

S. Demeke
Summary Breed additive and non-additive effects plus heritabilities and repeatabilities for milk yield per lactation (LMY), milk yield per day (DMY), lactation length (LL), annual milk yield (AMY), annual milk yield per metabolic body weight (AMYBW) and cow weight at calving (BW) were estimated for 5464 lactation records collected from purebred Boran (B), Friesian (F), and crosses of Friesian and Jersey (J) breeds with the Boran breed raised in the tropical highlands of Ethiopia. Single trait analysis was carried out by using two equivalent repeatability animal models. In the first model the genotype was fitted as a fixed group effect, while in the second model the genotype was substituted by breed additive, heterotic and recombination effects fitted as fixed covariates. Both the F and J breed additive effects, measured as a deviation from the B breed were significant (p < 0.01) for all traits, except for BW of the J. The F and J additive contributions were 2774 ± 81 and 1473 ± 362 kg for LMY, 7.1 ± 0.2 and 4.8 ± 0.8 kg for DMY, 152 ± 7 and 146 ± 31 days for LL, 2345 ± 71 and 1238 ± 319 kg for AMY, 20.6 ± 0.9 and 18.9 ± 4.3 kg for AMYBW, and 140 ± 4 and ,21 ± 22 kg (p > 0.05) for BW. The heterotic contributions to the crossbred performance were also positive and significant (p < 0.01) for all traits. The F1 heterosis expressed as a deviation from the mid-parent values were 22 and 66% for LMY, 11 and 20% for DMY, 29 and 29% for LL, 21 and 64% for AMY, 42 and 42% for AMYBW, and 2% (p < 0.05) and 11% for BW for the F × B and J × B crosses, respectively. The recombination effect estimated for the F × B crosses was negative and significant for LMY (,526 ± 192 kg, p < 0.01), DMY (,3.0 ± 0.4 kg, p < 0.001), AMY (,349 ± 174 kg, p < 0.05) and BW (,68 ± 11 kg, p < 0.001). For the J × B crosses the recombination loss was significant and negative only for DMY (,2.2 ± 0.7 kg, p < 0.05) and BW (,33 ± 17 kg, p < 0.05). The direct heritabilities (h2) estimated for LMY, DMY, LL, AMY and AMYBW were 0.24 ± 0.04, 0.19 ± 0.03, 0.13 ± 0.03, 0.23 ± 0.04 and 0.17 ± 0.05, respectively. Based on the genetic parameters estimated, the best breeding strategy to increased milk production under highland Ethiopian conditions is to apply selection on purebred base populations (Boran and Friesian) and then crossing them to produce F1 dairy cows. However, for breeding decision based on total dairy merit, further investigations are needed for traits such as milk quality, reproduction, longevity and survival. Zusammenfassung Additive Rasseneffekte, nicht additive Effekte, Heritabilitäten und Wiederholbarkeiten für Milchmenge pro Laktation (LMY), Milchmenge pro Tag (DMY), Laktationsdauer (LL), jährliche Milchmenge (AMY), jährliche Milchmenge pro metabolischem Körpergewicht (AMYBW) und Kuhgewichte zur Kalbung (BW) wurden anhand von 5464 Laktationsdatensätzen von reinrassigen Boran (B), Friesian (F) und Kreuzungen der Rassen Friesian und Jersey (J) mit der Rasse Boran, die im tropischen Hochland von Äthiopien groß gezogen wurden, geschätzt. Einmerkmalsmodelle wurden mit zwei äquivalenten Wiederholbarkeits-Tiermodellen durchgeführt. Im ersten Modell wurde der Genotyp als fixer Gruppeneffekt berücksichtigt, während im zweiten Modell der Genotyp durch additive Rasseneffekte, Heterosis und Rekombinationseffekte als Kovariable ersetzt wurde. Die additiven Rasseneffekte von F und J, gemessen als Abweichung von der Rasse B, waren für alle Merkmale signifikant (p < 0,01), ausgenommen BW für die Rasse J. Die additiven Rasseneffekte von F und J betrugen 2774 ± 81 und 1473 ± 362 kg für LMY, 7,1 ± 0,2 und 4,8 ± 0,8 kg für DMY, 152 ± 7 und 146 ± 31 Tage für LL, 2345 ± 71 und 1238 ± 319 kg für AMY, 20,6 ± 0,9 und 18,9 ± 4,3 kg für AMYBW und 140 ± 4 und ,21 ± 22 kg (p > 0,05) für BW. Die Heterosis bei den Kreuzungstieren war positiv und signifikant für alle Merkmale (p < 0,01). Die Heterosis der F1 -Tiere, ausgedrückt als Abweichung vom Mittel der beiden Eltern, betrug 22 und 66% für LMY, 11 und 20% für DMY, 29 und 29% für LL, 21 und 64% für AMY, 42% und 42% für AMYBW und 2% (p < 0,05) und 11% für BW für die F × B und J × B Kreuzungen. Der geschätzte Rekombinationseffekt für die F × B Kreuzungen war negativ und signifikant für LMY (,526 ± 192 kg, p < 0,01), DMY (,3,0 ± 0,4 kg, p < 0,001), AMY (,349 ± 174, p < 0,05) und BW (,68 ± 11 kg, p < 0,001). Für die J × B Kreuzungen war der Rekombinationsverlust signifikant und negativ nur für DMY (,2,2 ± 0,7 kg, p < 0,05) und BW (,33 ± 17, p < 0,05). Die geschätzten Heritabilitäten (h2) betrugen für LMY, DMY, LL, AMY und AMYBW 0,24 ± 0,04, 0,19 ± 0,03, 0,13 ± 0,03, 0,23 ± 0,04 und 0,17 ± 0,05. Basierend auf den geschätzten genetischen Parametern erscheint Selektion in den Reinzuchtpopulationen B und F und anschließ end Kreuzung dieser Tiere zur Erstellung von F1 -Milchkühen als günstigste Zuchtstrategie, um die Milchproduktion unter äthiopischen Hochlandbedingungen zu steigern. Für Zuchtentscheidungen, die die gesamte Milchproduktion berücksichtigen, sind weitere Untersuchungen notwendig für Merkmale wie Milchqualität, Reproduktion, Persistenz und Langlebigkeit. [source]

Effect of different liquid cultures of live yeast strains on performance, ruminal fermentation and microbial protein synthesis in lambs

M. K. Tripathi
Summary Three yeast strains, Kluyveromyces marximanus NRRL-3234 (KM), Saccharomyces cerevisiae NCDC-42 (SC) and Saccharomyces uvarum ATCC-9080 (SU), and a mixed culture (1:1:1 ratio) were evaluated for their value as probiotics in lamb feeding in two experiment. In experiment I and II, 20 and 30 pre-weaner lambs were fed for 63 and 60 days in two and three equal groups respectively. All lambs were offered ad libitum a creep mixture and Zizyphus nummularia leaves, and yeasts were dosed orally. In experiment I, one group received no yeast, the other of the mixed culture (1.5,2 × 1010 live cells/ml). In experiment II, yeast cultivation was modified yielding 1.5,2 × 1013 live cells/ml. Lambs of the three experimental groups received 1 ml/kg live weight of one of the individual yeasts. Feed intake did not differ among groups of both experiments with the exception of SC-supplemented lambs in experiment II which showed a trend to higher intakes per kg metabolic body weight and in percentage of body weight when compared with KM- and SU-supplemented lambs. Supplementation of the mixed yeast culture had no effect on intakes of digestible crude protein and metabolisable energy, nutrient digestibility, nitrogen balance and rumen fermentation characteristics (pH, ammonia, volatile fatty acid concentration, protozoa count) and urinary allantoin as an indicator of microbial protein synthesis. The same was true for comparisons in experiment II except ciliate protozoa counts, which showed a trend to be the highest with SU and the lowest with SC. The results of present study show that the response of lambs to supplemented live yeast cultures is inconsistent, as it lacked to have an effect in the present study, and that differences among strains were small, even when supplemented at a much higher live cell count. [source]

The comparative study digestion and metabolism of nitrogen and purine derivatives in male, Thai, Swamp buffalo and Thai, Brahman cattle

Thongsuk JETANA
ABSTRACT Studies on in vivo digestion, rates of passages, metabolism of nitrogen, urinary purine derivative excretion and blood metabolites were carried out in Thai Brahman cattle and Thai swamp buffaloes (16 months old). The animals were fed mixed diets based on pineapple (Ananas comusus) waste silage containing urea-N (NPN) and true protein from a concentrate (TP). The Brahman cattle (310 ± 15 kg) were heavier than the swamp buffaloes (195 ± 9.4 kg) and had higher dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) intakes when compared on the basis of their metabolic body weight (BW0.75), but these intakes did not differ significantly when the diets of each animal species were compared. The total tract, apparent digestibilities of dry matter (DM) and organic matter (OM) were not significantly different between the animal species when comparing the two types of diets. The NDF digestibility was significantly (P < 0.01) decreased in both animal species when fed the TP diet, but was significantly (P < 0.01) greater in cattle than in swamp buffaloes. The passage rate digesta k1 (P < 0.01) and the passage rate digesta k2 (through the caecum and proximal colon) (P < 0.03) were significantly slower, and the total mean retention time (TMRT) (P < 0.01) was significantly longer in swamp buffaloes when compared to Brahman cattle, but the transit time (TT) showed no difference (P = 0.07) between the animal species or the diets. The N intakes were not different in both animal species and diets, but urine-N was greater (P < 0.05) in Brahman cattle than that in swamp buffaloes. Urine N and digestibility of N were significantly (P < 0.04) higher in animals fed the NPN diet than those fed the TP diet. Urinary purine derivatives (PD) and the creatinine (Cr) excretion of swamp buffaloes were significantly (P < 0.01) lower than those in Brahman cattle. Plasma urea-N (BUN) concentration was significantly (P < 0.01) higher in swamp buffaloes than that in Brahman cattle, but plasma glucose and insulin concentrations were significantly (P < 0.01) higher in Brahman cattle than in swamp buffaloes. The concentrations of non-esterified fatty acids (NEFA) were not significantly (P > 0.05) different in animals fed different diets. The present study demonstrated that Brahman cattle were better in fiber digestibility than swamp buffaloes at utilizing pineapple waste silage with both N sources. [source]