Home About us Contact | |||
Meridional Temperature Gradient (meridional + temperature_gradient)
Selected AbstractsSpatial Analysis of the Factors Contributing to the Relationship between the Transient, Meridional Eddy Sensible, and Latent Heat Flux in the Southern HemisphereGEOGRAPHICAL ANALYSIS, Issue 2 2000Marilyn Raphael In this paper principal component analysis (PCA) and singular value decomposition (SVD) are used to define the importance of the variables contributing to the relationship between the transient latent and sensible heat fluxes and to show their temporal and spatial variation. SVD is offered as an alternative means of isolating spatial and temporal structures in data with the advantage that it can depict simultaneous space-time variations that are aggregates of the results produced by PCA. Both methods of analysis produced two very important uncorrelated modes of variability in January and July, indicating that the transient heat fluxes are influenced by few controlling factors. We suggest that these modes of variability represent the influences of the meridional temperature gradient, atmospheric moisture, and activity within the source and sink regions of the transient heat fluxes. The physical relationships between the heat fluxes that appear to represented by the statistical modes of variability are discussed. [source] Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast AsiaINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 12 2004Zuqiang Zhang Abstract Based on the 1979,95 mean pentad reanalysis data from the US National Centers for Environmental Prediction, the climatological characteristics and physical mechanism of the Asian summer monsoon (ASM) onset are investigated. Special focus is given to whether the ASM onset starts earlier over the Indochina Peninsula than over the South China Sea (SCS) and why the ASM is established the earliest over Southeast Asia. An examination of the composite thermodynamic and dynamic quantities confirms that the ASM onset commences earliest over the Indochina Peninsula, as highlighted by active convection and rainfall resulting from the convergence of southwesterly flow from the Bay of Bengal (BOB) vortex and easterly winds associated with the subtropical anticyclone over the SCS. Two other important characteristics not previously noted are also identified: the earliest reversal of meridional temperature gradient throughout the entire troposphere and the corresponding establishment of an easterly vertical wind shear, which are due to upper level warming caused by eddy (convective) transport of latent heat. These changes in the large-scale circulation suggest that, in addition to rainfall, a reversal in the planetary-scale circulation should be included in determining the timing of the ASM onset. With such a consideration, the climatological ASM onset occurs first over southeastern BOB and southwestern Indochina Peninsula in early May, and then advances northeastward to reach the SCS by the fourth pentad of May (16,20 May). The monsoon then covers the entire Southeast Asia region by the end of May. Subsequently, a similar onset process begins over the eastern Arabian Sea, India and western BOB, and the complete establishment of the ASM over India is accomplished in mid June. In the process of the onset of each ASM component, the reversal of the upper level planetary-scale circulation depends strongly on that of the meridional temperature gradient. Over the Indochina Peninsula, the seasonal transition of upper level temperature results from convection-induced diabatic heating, whereas over western Asia it is attributed to subsidence warming induced by the active ascending motion over the former region. The steady increase in surface sensible heating over the Indian subcontinent and the latent heating over the tropical Indian Ocean in April to early May appear to be the major impetus for the development of the cyclonic vortex over the BOB. A similar enhancement over the Arabian Peninsula and the surrounding regions is also identified to be crucial to the development of the so-called onset vortex over the Arabian Sea, and then ultimately to the ASM onset over India. Copyright © 2004 Royal Meteorological Society [source] Meridional energy transport in the coupled atmosphere,ocean system: scaling and numerical experimentsTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 644 2009Geoffrey K. Vallis Abstract We explore meridional energy transfer in the coupled atmosphere,ocean system, with a focus on the extratropics. We present various elementary scaling arguments for the partitioning of the energy transfer between atmosphere and ocean, and illustrate those arguments by numerical experimentation. The numerical experiments are designed to explore the effects of changing various properties of the ocean (its size, geometry and diapycnal diffusivity), the atmosphere (its water vapour content) and the forcing of the system (the distribution of incoming solar radiation and the rotation rate of the planet). We find that the energy transport associated with wind-driven ocean gyres is closely coupled to the energy transport of the midlatitude atmosphere so that, for example, the heat transport of both systems scales in approximately the same way with the meridional temperature gradient in midlatitudes. On the other hand, the deep circulation of the ocean is not tightly coupled with the atmosphere and its energy transport varies in a different fashion. Although for present-day conditions the atmosphere transports more energy polewards than does the ocean, we find that a wider or more diffusive ocean is able to transport more energy than the atmosphere. The polewards energy transport of the ocean is smaller in the Southern Hemisphere than in the Northern Hemisphere; this arises because of the effects of a circumpolar channel on the deep overturning circulation. The atmosphere is able to compensate for changes in oceanic heat transport due to changes in diapycnal diffusivity or geometry, but we find that the compensation is not perfect. We also find that the transports of both atmosphere and ocean decrease if the planetary rotation rate increases substantially, indicating that there is no a priori constraint on the total meridional heat transport in the coupled system. Copyright © 2009 Royal Meteorological Society [source] Possible impacts of anthropogenic and natural aerosols on Australian climate: a reviewINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2009Leon D. Rotstayn Abstract A review is presented of the aerosol,climate interaction with specific focus on the Australian region. The uncertainties associated with this interaction are much larger than those associated with greenhouse gases or other forcing agents, and are currently a major obstacle in climate-change research. However, new research suggests that aerosol effects are of comparable importance to greenhouse gases as a driver of recent climate trends in the Southern Hemisphere, including Australia. A significant new result from climate modelling is that anthropogenic aerosol over Asia affects meridional temperature gradients and atmospheric circulation, and may have caused an increase in rainfall over north-western Australia. Global ocean circulation provides another mechanism whereby aerosol changes in the Northern Hemisphere can affect climate in the Southern Hemisphere, suggesting an urgent need for further targeted studies using coupled ocean-atmosphere global climate models. To better model climate variability and climate change in the Australian region, more research is needed into the sources of aerosol and their precursors, their atmospheric distributions and transformations, and how to incorporate these processes robustly in global climate models (GCMs). The following priorities are suggested for further research in Australia linking aerosol observations and modelling: natural aerosol over the Southern Ocean, tropical biomass-burning aerosol in Indonesia and Australia, secondary organic aerosol (SOA) from volatile organic compounds (VOCs), wind-blown dust and modulation of rainfall by anthropogenic aerosol. Copyright © 2008 Royal Meteorological Society [source] |