Mental Retardation Syndrome (mental + retardation_syndrome)

Distribution by Scientific Domains


Selected Abstracts


Mapping of a Gene for Alopecia with Mental Retardation Syndrome (APMR3) on Chromosome 18q11.2-q12.2

ANNALS OF HUMAN GENETICS, Issue 5 2007
A. Wali
Summary Alopecia with mental retardation syndrome (APMR) is a rare autosomal recessive disorder characterized by total or partial absence of hair from the scalp and other parts of the body and associated with mental retardation. Previously, we have reported the mapping of two alopecia and mental retardation genes (APMR1 and APMR2) on human chromosome 3. In the present study, after excluding both of these loci through linkage analysis, a whole genome scan was performed by genotyping 396 polymorphic microsatellite markers located on 22 autosomes and the X and Y chromosomes. A disease locus was mapped to a 10.9 cM region, flanked by markers D18S866 and D18S811, on chromosome 18q11.2,q12.2. A maximum two-point LOD score of 3.03 at ,= 0.0 was obtained with marker D18S1102. Multipoint linkage analysis resulted in maximum LOD scores of 4.03 with several markers in the candidate region. According to the Rutgers combined linkage-physical map of the human genome (build 36) this region covers 12.17 Mb. DNA sequence analysis of nine candidate genes including DSC3, DSC1, DSG1, DSG4, DSG3, ZNF397, ZNF271, ZNF24 and ZNF396 did not reveal any sequence variants in the affected individuals of the family presented here. [source]


Genetics and Mental Retardation Syndromes.

JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES, Issue 4 2001
A New Look at Behaviour, Interventions
[source]


Clinical, cellular, and neuropathological consequences of AP1S2 mutations: further delineation of a recognizable X-linked mental retardation syndrome,

HUMAN MUTATION, Issue 7 2008
Guntram Borck
Abstract Mutations in the AP1S2 gene, encoding the ,1B subunit of the clathrin-associated adaptor protein complex (AP)-1, have been recently identified in five X-linked mental retardation (XLMR) families, including the original family with Fried syndrome. Studying four patients in two unrelated families in which AP1S2 nonsense and splice-site mutations segregated, we found that affected individuals presented, in addition to previously described features, with elevated protein levels in cerebrospinal fluid (CSF). Moreover, computed tomography scans demonstrated that the basal ganglia calcifications associated with AP1S2 mutations appeared during childhood and might be progressive. Based on these observations, we propose that AP1S2 mutations are responsible for a clinically recognizable XLMR and autism syndrome associating hypotonia, delayed walking, speech delay, aggressive behavior, brain calcifications, and elevated CSF protein levels. Using the AP-2 complex, in which the , subunit is encoded by one single gene, as a model system, we demonstrated that , subunits are essential for the stability of human AP complexes. By contrast, no major alteration of the stability, subcellular localization, and function of the AP-1 complex was observed in fibroblasts derived from a patient carrying an AP1S2 mutation. Similarly, neither macro- nor microscopic defects were observed in the brain of an affected fetus. Altogether, these data suggest that the absence of an AP-1 defect in peripheral tissues is due to functional redundancy among AP-1 , subunits (,1A, ,1B, and ,1C) and that the phenotype observed in our patients results from a subtle and brain-specific defect of the AP-1-dependent intracellular protein traffic. Hum Mutat 29(7), 966,974, 2008. © 2008 Wiley-Liss, Inc. [source]


New mental retardation syndrome associated with ocular colobomas, cleft palate, and genital, skeletal, and craniofacial abnormalities

AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 3 2002
M.M. Khalifa
Abstract We describe three Canadian brothers of Cree origin, with a previously undescribed pattern of malformation including distinctive craniofacial abnormalities with triangular facies, hypertelorism, low-set and posteriorly rotated ears, ocular colobomas, ptosis, brachycephaly with widely separated sutures, cleft soft palate, undescended testes, bifid scrotum and hypospadius, wide webbed neck, webbed fingers, pectus excavatum and hypersegmented sternum, and severe psychomotor retardation. The presence of normal brain imaging and physical growth distinguishes them from other syndromes with overlapping abnormalities. This is either an X-linked or autosomal recessive condition. © 2001 Wiley-Liss, Inc. [source]


Mapping of a Gene for Alopecia with Mental Retardation Syndrome (APMR3) on Chromosome 18q11.2-q12.2

ANNALS OF HUMAN GENETICS, Issue 5 2007
A. Wali
Summary Alopecia with mental retardation syndrome (APMR) is a rare autosomal recessive disorder characterized by total or partial absence of hair from the scalp and other parts of the body and associated with mental retardation. Previously, we have reported the mapping of two alopecia and mental retardation genes (APMR1 and APMR2) on human chromosome 3. In the present study, after excluding both of these loci through linkage analysis, a whole genome scan was performed by genotyping 396 polymorphic microsatellite markers located on 22 autosomes and the X and Y chromosomes. A disease locus was mapped to a 10.9 cM region, flanked by markers D18S866 and D18S811, on chromosome 18q11.2,q12.2. A maximum two-point LOD score of 3.03 at ,= 0.0 was obtained with marker D18S1102. Multipoint linkage analysis resulted in maximum LOD scores of 4.03 with several markers in the candidate region. According to the Rutgers combined linkage-physical map of the human genome (build 36) this region covers 12.17 Mb. DNA sequence analysis of nine candidate genes including DSC3, DSC1, DSG1, DSG4, DSG3, ZNF397, ZNF271, ZNF24 and ZNF396 did not reveal any sequence variants in the affected individuals of the family presented here. [source]


Alopecia,mental retardation syndrome: clinical and molecular characterization of four patients

BRITISH JOURNAL OF DERMATOLOGY, Issue 3 2008
A. Tzschach
No abstract is available for this article. [source]


A novel locus for alopecia with mental retardation syndrome (APMR2) maps to chromosome 3q26.2-q26.31

CLINICAL GENETICS, Issue 3 2006
A Wali
Congenital alopecia may occur either alone or in association with ectodermal and other abnormalities. On the bases of such associations, several different syndromes featuring congenital alopecia can be distinguished. Alopecia with mental retardation syndrome (APMR) is a rare autosomal recessive disorder, clinically characterized by total or partial hair loss and mental retardation. In the present study, a five-generation Pakistani family with multiple affected individuals with APMR was ascertained. Patients in this family exhibited typical features of APMR syndrome. The disease locus was mapped to chromosome 3q26.2-q26.31 by carrying out a genome scan followed by fine mapping. A maximum two-point logarithm of odds (LOD) score of 2.93 at ,= 0.0 was obtained at markers D3S3053 and D3S2309. Multipoint linkage analysis resulted in a maximum LOD score of 4.57 with several markers, which supports the linkage. The disease locus was flanked by markers D3S1564 and D3S2427, which corresponds to 9.6-cM region according to the Rutgers combined linkage-physical map of the human genome (build 35) and contains 5.6 Mb. The linkage interval of the APMR locus identified here does not overlap with the one described previously; therefore, this locus has been designated as APMR2. [source]


Xenopus aristaless-related homeobox (xARX) gene product functions as both a transcriptional activator and repressor in forebrain development

DEVELOPMENTAL DYNAMICS, Issue 2 2005
Daniel W. Seufert
Abstract Mutations in the aristaless-related homeobox (ARX) gene have been found in patients with a variety of X-linked mental retardation syndromes with forebrain abnormalities, including lissencephaly. Arx is expressed in the developing mouse, Xenopus, and zebrafish forebrain. We have used whole-mount in situ hybridization, overexpression, and loss-of-function studies to investigate the involvement of xArx in Xenopus brain development. We verified that xArx is expressed in the prospective diencephalon, as the forebrain is patterned and specified during neural plate stages. Expression spreads into the ventral and medial telencephalon as development proceeds through neural tube and tadpole stages. Overexpression of xArx resulted in morphological abnormalities in forebrain development, including loss of rostral midline structures, syn- or anophthalmia, dorsal displacement of the nasal organ, and ventral neural tube hyperplasia. Additionally, there is a delay in expression of many molecular markers of brain and retinal development. However, expression of some markers, dlx5 and wnt8b, was enhanced in xArx -injected embryos. Loss-of-function experiments indicated that xArx was necessary for normal forebrain development. Expansion of wnt8b expression depended on xArx function as a transcriptional repressor, whereas ectopic expression of dlx5, accompanied by development of ectopic otic structures, depended on function of Arx as a transcriptional activator. These results suggest that Arx acts as a bifunctional transcriptional regulator in brain development. Developmental Dynamics 232:313,324, 2005. © 2004 Wiley-Liss, Inc. [source]


Mutations in PHD-like domain of the ATRX gene correlate with severe psychomotor impairment and severe urogenital abnormalities in patients with ATRX syndrome

CLINICAL GENETICS, Issue 1 2006
C Badens
Mutations in ATRX are associated with a wide and clinically heterogeneous spectrum of X-linked mental retardation syndromes. The ATRX protein, involved in chromatin remodelling, belongs to the family of SWI/SNF DNA helicases and contains a plant homeodomain (PHD)-like domain. To date, more than 60 different mutations have been reported in ATRX. One of them is recurrent and accounts for 20% of all the reported mutations, whereas all others are private. Most mutations are clustered in the two major functional domains, the helicase and the PHD-like domain. So far, no clear genotype,phenotype correlation has been established, with exception to the rare truncating mutations located at the C-terminal part of the protein, which are consistently associated with severe urogenital defects. In this study, we report the molecular analysis performed in 16 families positive for ATRX. Our findings indicate that, in addition to the previously described mutation ,hotspot' in the PHD-like domain, two other protein sections emerge as minor ,hotspots' in the helicase region encoded by exons 18,20 and 26,29, respectively, gathering 33% of all described mutations. Additionally, based on the clinical data collected for 22 patients from the 16 families, we observe that mutations in the PHD-like domain produce severe and permanent psychomotor deficiency, usually preventing patients from walking, as well as constant urogenital abnormalities, while mutations in the helicase domain lead to delayed but correct psychomotor acquisitions together with mild or absent urogenital abnormalities. In summary, mutations in the helicase domain are associated with milder phenotypes than mutations in the PHD-like domain. [source]