Memory Retrieval (memory + retrieval)

Distribution by Scientific Domains


Selected Abstracts


An Activation-Based Model of Sentence Processing as Skilled Memory Retrieval

COGNITIVE SCIENCE - A MULTIDISCIPLINARY JOURNAL, Issue 3 2005
Richard L. Lewis
Abstract We present a detailed process theory of the moment-by-moment working-memory retrievals and associated control structure that subserve sentence comprehension. The theory is derived from the application of independently motivated principles of memory and cognitive skill to the specialized task of sentence parsing. The resulting theory construes sentence processing as a series of skilled associative memory retrievals modulated by similarity-based interference and fluctuating activation. The cognitive principles are formalized in computational form in the Adaptive Control of Thought,Rational (ACT,R) architecture, and our process model is realized in ACT,R. We present the results of 6 sets of simulations: 5 simulation sets provide quantitative accounts of the effects of length and structural interference on both unambiguous and garden-path structures. A final simulation set provides a graded taxonomy of double center embeddings ranging from relatively easy to extremely difficult. The explanation of center-embedding difficulty is a novel one that derives from the model' complete reliance on discriminating retrieval cues in the absence of an explicit representation of serial order information. All fits were obtained with only 1 free scaling parameter fixed across the simulations; all other parameters were ACT,R defaults. The modeling results support the hypothesis that fluctuating activation and similarity-based interference are the key factors shaping working memory in sentence processing. We contrast the theory and empirical predictions with several related accounts of sentence-processing complexity. [source]


Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus

GENES, BRAIN AND BEHAVIOR, Issue 1 2003
T. Strekalova
Using specific polyclonal antisera against c-Fos, JunB, c-Jun and JunD, we tried to identify the candidate transcription factors of the immediate early gene family which may contribute to the molecular processes during contextual memory reconsolidation. For that purpose we analyzed the expression of these proteins in the hippocampus after contextual memory retrieval in a mouse model of fear conditioning. A single exposure to a foot shock of 0.8 mA was sufficient to induce robust contextual fear conditioning in C57Bl/6N mice. In these mice context dependent memory retrieval evoked a marked induction of c-Fos and JunB, but not of c-Jun and JunD, in pyramidal CA1 neurons of the dorsal hippocampus. In contrast, mice exposed and re-exposed only to the context, without foot shock, did not show behavioral signs of contextual fear conditioning and exhibited significantly less expression of c-Fos and JunB in CA1 neurons. Mice which received a foot shock but were not re-exposed to the context revealed no immediate early gene induction. These results demonstrate that contextual memory retrieval is associated with de novo synthesis of specific members of the Fos/Jun transcription factor family. Therefore we suggest that these genes may contribute to plasticity and reconsolidation accompanying the retrieval process. The specific activation of CA1 neurons during the retrieval of contextual fear associations supports the postulated concept of a mnemonic role of this hippocampal subsector during the retrieval of contextual informations. [source]


Speed, Accuracy, and Serial Order in Sequence Production

COGNITIVE SCIENCE - A MULTIDISCIPLINARY JOURNAL, Issue 1 2007
Peter Q. Pfordresher
The production of complex sequences like music or speech requires the rapid and temporally precise production of events (e.g., notes and chords), often at fast rates. Memory retrieval in these circumstances may rely on the simultaneous activation of both the current event and the surrounding context (Lashley, 1951). We describe an extension to a model of incremental retrieval in sequence production (Palmer & Pfordresher, 2003) that incorporates this logic to predict overall error rates and speed,accuracy trade-offs, as well as types of serial ordering errors. The model,assumes that retrieval of the current event is influenced by activations of surrounding events. Activations of surrounding events increase over time, such that both the accessibility of distant events and overall accuracy increases at slower production rates. The model's predictions were tested in an experiment in which pianists performed unfamiliar music at 8 different tempi. Model fits to speed,accuracy data and to serial ordering errors support model predictions. Parameter fits to individual data further suggest that working memory contributes to the retrieval of serial order and overall accuracy is influenced in addition by motor dexterity and domain-specific skill. [source]


Differential impact of brain damage on the access mode to memory representations: an information theoretic approach

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
Rosapia Lauro-Grotto
Abstract Different access modes to information stored in long-term memory can lead to different distributions of errors in classification tasks. We have designed a famous faces memory classification task that allows for the extraction of a measure of metric content, an index of the relevance of semantic cues for classification performance. High levels of metric content are indicative of a relatively preferred semantic access mode, while low levels, and similar correct performance, suggest a preferential episodic access mode. Compared with normal controls, the metric content index was increased in patients with Alzheimer's disease (AD), decreased in patients with herpes simplex encephalitis, and unvaried in patients with insult in the prefrontal cortex. Moreover, the metric content index was found to correlate with a measure of the severity of dementia in patients with AD, and to track the progression of the disease. These results underline the role of the medial-temporal lobes and of the temporal cortex, respectively, for the episodic and semantic routes to memory retrieval. Moreover, they confirm the reliability of information theoretic measures for characterizing the structure of the surviving memory representations in memory-impaired patient populations. [source]


Glucocorticoid receptors in the basolateral nucleus of amygdala are required for postreactivation reconsolidation of auditory fear memory

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
Xin-Chun Jin
Abstract It is well known that initial consolidation requires de novo gene transcription and protein synthesis in order for memory to become stable. The consolidated memory again becomes labile and temporarily sensitive to disruption when retrieved, requiring a reconsolidation process to become permanent. Although it is well established that glucocorticoid receptors (GR) in the basolateral nucleus of amygdala (BLA) are required for consolidation of fear memory, little is known about their role in reconsolidation of fear memory. In the present study, we first examined the effect of a GR antagonist on postconditioning consolidation of auditory fear memory (AFM). Intra-BLA infusion of the GR antagonist RU486 0 h postconditioning impaired long-term AFM, leaving short-term AFM intact. RU486 had no effect if infusion was performed 6 h postconditioning. We then investigated the effect of the RU486 treatment on postretrieval reconsolidation of AFM. Severe amnesia took place when RU486 was infused into the BLA 0 h postretrieval (reactivation) of AFM, regardless of whether the retrieval was performed 1 day or 10 days postconditioning. RU486 produced no amnesia if the memory retrieval was omitted or if the drug was administered 6 h postretrieval. Treatment with RU486 0 h postretrieval produced no deficit in postretrieval short-term memory but impaired postretrieval long-term memory, and the amnesia exhibited no spontaneous recovery 6 days after retrieval. The present results provide strong evidence that glucocorticoid receptors in the BLA are required for reconsolidation as well as consolidation of AFM. [source]


Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006
R. G. M. MorrisArticle first published online: 8 JUN 200
Abstract The 2004 EJN Lecture was an attempt to lay out further aspects of a developing neurobiological theory of hippocampal function [Morris, R.G.M., Moser, E.I., Riedel, G., Martin, S.J., Sandin, J., Day, M. & O'Carroll, C. (2003) Phil. Trans. R. Soc. Lond. B Biol. Sci., 358, 773,786.] These are that (i) activity-dependent synaptic plasticity plays a key role in the automatic encoding and initial storage of attended experience; (ii) the persistence of hippocampal synaptic potentiation over time can be influenced by other independent neural events happening closely in time, an idea with behavioural implications for memory; and (iii) that systems-level consolidation of memory traces within neocortex is guided both by hippocampal traces that have been subject to cellular consolidation and by the presence of organized schema in neocortex into which relevant newly encoded information might be stored. Hippocampal memory is associative and, to study it more effectively than with previous paradigms, a new learning task is described which is unusual in requiring the incidental encoding of flavour,place paired associates, with the readout of successful storage being successful recall of a place given the flavour with which it was paired. NMDA receptor-dependent synaptic plasticity is shown to be critical for the encoding and intermediate storage of memory traces in this task, while AMPA receptor-mediated fast synaptic transmission is necessary for memory retrieval. Typically, these rapidly encoded traces decay quite rapidly over time. Synaptic potentiation also decays rapidly, but can be rendered more persistent by a process of cellular consolidation in which synaptic tagging and capture play a key part in determining whether or not it will be persistent. Synaptic tags set at the time of an event, even many trivial events, can capture the products of the synthesis of plasticity proteins set in train by events before, during or even after an event to be remembered. Tag,protein interactions stabilize synaptic potentiation and, by implication, memory. The behavioural implications of tagging are explored. Finally, using a different protocol for flavour,place paired associate learning, it is shown that rats can develop a spatial schema which represents the relative locations of several different flavours of food hidden at places within a familiar space. This schema is learned gradually but, once acquired, enables new paired associates to be encoded and stored in one trial. Their incorporation into the schema prevents rapid forgetting and suggests that schema play a key and hitherto unappreciated role in systems-level memory consolidation. The elements of what may eventually mature into a more formal neurobiological theory of hippocampal memory are laid out as specific propositions with detailed conceptual discussion and reference to recent data. [source]


Altered conditioned fear behavior in glutamate decarboxylase 65 null mutant mice

GENES, BRAIN AND BEHAVIOR, Issue 2 2003
O. Stork
We investigated the involvement of the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and GAD65-mediated ,-aminobutyric acid (GABA) synthesis in the formation and expression of Pavlovian fear memory. To this end, behavioral, endocrine and autonomic parameters were examined during conditioned fear retrieval of mice with targeted ablation of the GAD65 gene (GAD65,/, mice). These mutant mice were found to display specific fear behavior (freezing, escape), as well as autonomic (increased defecation) and endocrine activation (increased plasma corticosterone) during fear memory retrieval. However, freezing was reduced and flight and escape behavior were increased in GAD65,/, mice compared to their wild type and heterozygous littermates, while corticosterone levels and defecation rates did not differ between genotypes. Active defensive behavior of GAD65,/, mice was observed during both auditory cued and contextual retrieval of fear memory, as well as immediately after conditioning. These data indicate a selectively altered behavioral fear response in GAD65,/, mice, most likely due to deficits in threat estimation or the elicitation of appropriate conditioned fear behavior, and suggest that GAD65 is a genetic determinant of conditioned fear behavior. GAD65,/, mice provide a valuable tool to further dissect the GABAergic mechanisms involved in fear and anxiety and to model GABA-related neurological and psychiatric disorders. [source]


Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus

GENES, BRAIN AND BEHAVIOR, Issue 1 2003
T. Strekalova
Using specific polyclonal antisera against c-Fos, JunB, c-Jun and JunD, we tried to identify the candidate transcription factors of the immediate early gene family which may contribute to the molecular processes during contextual memory reconsolidation. For that purpose we analyzed the expression of these proteins in the hippocampus after contextual memory retrieval in a mouse model of fear conditioning. A single exposure to a foot shock of 0.8 mA was sufficient to induce robust contextual fear conditioning in C57Bl/6N mice. In these mice context dependent memory retrieval evoked a marked induction of c-Fos and JunB, but not of c-Jun and JunD, in pyramidal CA1 neurons of the dorsal hippocampus. In contrast, mice exposed and re-exposed only to the context, without foot shock, did not show behavioral signs of contextual fear conditioning and exhibited significantly less expression of c-Fos and JunB in CA1 neurons. Mice which received a foot shock but were not re-exposed to the context revealed no immediate early gene induction. These results demonstrate that contextual memory retrieval is associated with de novo synthesis of specific members of the Fos/Jun transcription factor family. Therefore we suggest that these genes may contribute to plasticity and reconsolidation accompanying the retrieval process. The specific activation of CA1 neurons during the retrieval of contextual fear associations supports the postulated concept of a mnemonic role of this hippocampal subsector during the retrieval of contextual informations. [source]


Exchange protein activated by cyclic AMP 2 (Epac2) plays a specific and time-limited role in memory retrieval,

HIPPOCAMPUS, Issue 9 2010
Anghelus Ostroveanu
Abstract Knowledge on the molecular mechanisms involved in memory retrieval is limited due to the lack of tools to study this stage of the memory process. Here we report that exchange proteins activated by cAMP (Epac) play a surprisingly specific role in memory retrieval. Intrahippocampal injection of the Epac activator 8-pCPT-2,O-Me-cAMP was shown to improve fear memory retrieval in contextual fear conditioning whereas acquisition and consolidation were not affected. The retrieval enhancing effect of the Epac activator was even more prominent in the passive avoidance paradigm. Down-regulation of Epac2 expression in the hippocampal CA1 area impaired fear memory retrieval when the memory test was performed 72 h after training, but not when tested after 17 days. Our data thus identify an important time-limited role for hippocampal Epac2 signaling in cognition and opens new avenues to investigate the molecular mechanisms underlying memory retrieval. © 2009 Wiley-Liss, Inc. [source]


Neurocognitive processes of the religious leader in Christians

HUMAN BRAIN MAPPING, Issue 12 2009
Jianqiao Ge
Abstract Our recent work suggests that trait judgment of the self in Christians, relative to nonreligious subjects, is characterized by weakened neural coding of stimulus self-relatedness in the ventral medial prefrontal cortex (VMPFC) but enhanced evaluative processes of self-referential stimuli in the dorsal medial prefrontal cortex (DMPFC). The current study tested the hypothesis that Christian belief and practice produce a trait summary about the religious leader (Jesus) in the believers and thus episodic memory retrieval is involved to the minimum degree when making trait judgment of Jesus. Experiment 1 showed that to recall a specific incident to exemplify Jesus' trait facilitated behavioral performances associated with the following trait judgment of Jesus in nonreligious subjects but not in Christians. Experiment 2 showed that, for nonreligious subjects, trait judgments of both government and religious leaders resulted in enhanced functional connectivity between MPFC and posterior parietal cortex (PPC)/precuneus compared with self judgment. For Christian subjects, however, the functional connectivity between MPFC and PPC/precuneus differentiated between trait judgments of the government leader and the self but not between trait judgments of Jesus and the self. Our findings suggest that Christian belief and practice modulate the neurocognitive processes of the religious leader so that trait judgment of Jesus engages increased employment of semantic trait summary but decreased memory retrieval of behavioral episodes. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


Social cognition and the brain: A meta-analysis

HUMAN BRAIN MAPPING, Issue 3 2009
Frank Van Overwalle
Abstract This meta-analysis explores the location and function of brain areas involved in social cognition, or the capacity to understand people's behavioral intentions, social beliefs, and personality traits. On the basis of over 200 fMRI studies, it tests alternative theoretical proposals that attempt to explain how several brain areas process information relevant for social cognition. The results suggest that inferring temporary states such as goals, intentions, and desires of other people,even when they are false and unjust from our own perspective,strongly engages the temporo-parietal junction (TPJ). Inferring more enduring dispositions of others and the self, or interpersonal norms and scripts, engages the medial prefrontal cortex (mPFC), although temporal states can also activate the mPFC. Other candidate tasks reflecting general-purpose brain processes that may potentially subserve social cognition are briefly reviewed, such as sequence learning, causality detection, emotion processing, and executive functioning (action monitoring, attention, dual task monitoring, episodic memory retrieval), but none of them overlaps uniquely with the regions activated during social cognition. Hence, it appears that social cognition particularly engages the TPJ and mPFC regions. The available evidence is consistent with the role of a TPJ-related mirror system for inferring temporary goals and intentions at a relatively perceptual level of representation, and the mPFC as a module that integrates social information across time and allows reflection and representation of traits and norms, and presumably also of intentionality, at a more abstract cognitive level. Hum Brain Mapp, 2009. © 2008 Wiley-Liss, Inc. [source]


Control of semantic interference in episodic memory retrieval is associated with an anterior cingulate-prefrontal activation pattern

HUMAN BRAIN MAPPING, Issue 2 2001
Manfred Herrmann
Prefrontal activation is a consistent finding in functional neuroimaging studies of episodic memory retrieval. In the present study we aimed at a further analysis of prefrontal neural systems involved in the executive control of context-specific properties in episodic memory retrieval using an event-related fMRI design. Nine subjects were asked to learn two 20-item word lists that consisted of concrete nouns assigned to four semantic categories. Ten items of both word lists referred to the same semantic category. Subjects were instructed to determine whether nouns displayed in random order corresponded to the first 20-item target list. The interference evoked by the retrieval of semantically related items of the second list resulted in significantly longer reaction times compared to the noninterference condition. Contrasting the interference against the noninterference retrieval condition demonstrated an activation pattern that comprised a right anterior cingulate and frontal opercular area and a left-lateralized dorsolateral prefrontal region. Trial averaged time series revealed that the PFC areas were selectively activated at the interference condition and did not respond to the familiarity of learned words. These findings suggest a functionally separable role of prefrontal cortical areas mediating processes associated with the executive control of interfering context information in episodic memory retrieval. Hum. Brain Mapping 13:94,103, 2001. © 2001 Wiley-Liss, Inc. [source]


The Effect of Learning Experiences and Context on Infant Imitation and Generalization

INFANCY, Issue 6 2008
Emily J. H. Jones
Over the first years of life, infants gradually develop the ability to retrieve their memories across cue and contextual changes. Whereas maturational factors drive some of these developments in memory ability, experiences occurring within the learning event may also impact infants' ability to retrieve memories in new situations. In 2 experiments we examined whether it was possible to facilitate 12-month-old infants' generalization of learning in the deferred imitation paradigm by varying experiences before or during the demonstration session, or during the retention interval. In Experiment 1, altering the length, timing, or variability of training had no impact on generalization; infants showed a low, but consistent level of memory retrieval. In Experiment 2, infants who experienced a unique context for encoding and retrieval exhibited generalization; infants who experienced the context prior to the demonstration session, or during the retention interval, did not. Specificity is a robust feature of infant memory and is not substantially altered by encoding experiences in an observational learning paradigm. Previous history with a learning environment can, however, impact the flexibility of memory retrieval. [source]


Timing of potential and metabolic brain energy

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Jakob Korf
Abstract The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking, consciousness and self-consciousness are so fast that their execution depends primarily on fast neurotransmission (in the millisecond range) and action-potentials. In other words: brain functioning requires primarily maximal potential energy. Metabolic brain energy is necessary to restore and maintain the potential energy. [source]


No persisting effect of partial sleep curtailment on cognitive performance and declarative memory recall in adolescents

JOURNAL OF SLEEP RESEARCH, Issue 1-Part-I 2010
MARTA KOPASZ
Summary Growing evidence indicates that sleep facilitates learning and memory processing. Sleep curtailment is increasingly common in adolescents. The aim of this study was to examine the effects of short-term sleep curtailment on declarative memory consolidation in adolescents. A randomized, cross-over study design was chosen. Twenty-two healthy subjects, aged 14,16 years, spent three consecutive nights in the sleep laboratory with a bedtime of 9 h during the first night (adaptation), 4 h during the second (partial sleep curtailment) and 9 h during the third night (recovery). The control condition consisted of three consecutive nights with bedtimes of 9 h. Both experimental conditions were separated by at least 3 weeks. The acquisition phase for the declarative tests was between 16:00 and 18:00 hours before the second night. Memory performance was examined in the morning after the recovery night. Executive function, attention and concentration were also assessed to control for any possible effects of tiredness. During the 4-h night, we observed a curtailment of 50% of non-rapid eye movement (non-REM), 5% of slow wave sleep (SWS) and 70% of REM sleep compared with the control night. Partial sleep curtailment of one night did not influence declarative memory retrieval significantly. Recall in the paired-associate word list task was correlated positively with percentage of non-REM sleep in the recovery night. Declarative memory consolidation does not appear to be influenced by short-term sleep curtailment in adolescents. This may be explained by the high ability of adolescents to compensate for acute sleep loss. The correlation between non-REM sleep and declarative memory performance supports earlier findings. [source]


Source memory for the color of pictures: Event-related brain potentials (ERPs) reveal sensory-specific retrieval-related activity

PSYCHOPHYSIOLOGY, Issue 3 2003
Yael M. Cycowicz
Abstract Remembering the context (i.e., source) in which an event occurred reveals episodic memory effects (EM) in the event-related brain potentials (ERP). In some verbal source memory experiments, a late prefrontal EM effect has been observed. In a different, pictorial source memory paradigm, a late, parieto-occipital EM effect was recorded. To assess whether these two EM effects stemmed from differences in task paradigms or from source-attribute differences, ERPs were recorded during source memory retrieval for object colors in two tasks. In the sequential task, old/new judgments were followed by source judgments (i.e., color). In the exclusion task, source memory judgments coincided with recognition judgments. For both tasks, late, parietao-occipital EM effects were observed. These findings suggest that it is not the nature of the task, but rather the perceptual characteristics of the source that lead to the presence of the parieto-occipital EM effect. The data further imply that memories for perceptual attributes such as color are stored in and retrieved from sensory-specific cortical areas. [source]


Interfacing mind and brain: A neurocognitive model of recognition memory

PSYCHOPHYSIOLOGY, Issue 5 2000
Axel Mecklinger
A variety of processes contribute to successful recognition memory, some of which can be associated with spatiotemporally distinct event-related potential old/new effects. An early frontal and a subsequent parietal old/new effect are correlated with the familiarity and recollection subcomponents of recognition memory, respectively, whereas a late, postretrieval old/new effect seems to reflect an ensemble of evaluation processes that are set by the task context in which retrieval occurs. Both the early frontal and the parietal old/new effects are differentially modulated by the informational content (e.g., object forms and spatial locations) of recognition and seem to rely on brain systems damaged in amnesia. The late frontal effect appears to reflect prefrontal cortex activation. A neurophysiologically based model of recognition memory retrieval is presented and it is shown that coupling recognition memory subprocesses with distinct old/new effects allow examination of the time course of the processes that contribute to correct and to illusory memories. In conjunction with event-related functional magnetic resonance imaging activation patterns the brain systems recruited by various aspects of episodic memory retrieval can be identified. [source]


Hippocampal interictal spikes disrupt cognition in rats

ANNALS OF NEUROLOGY, Issue 2 2010
Jonathan K. Kleen BS
Objective Cognitive impairment is common in epilepsy, particularly in memory function. Interictal spikes (IISs) are thought to disrupt cognition, but it is difficult to delineate their contribution from general impairments in memory produced by etiology and seizures. We investigated the transient impact of focal IISs on the hippocampus, a structure crucial for learning and memory and yet highly prone to IISs in temporal lobe epilepsy (TLE). Methods Bilateral hippocampal depth electrodes were implanted into 14 Sprague-Dawley rats, followed by intrahippocampal pilocarpine or saline infusion unilaterally. Rats that developed chronic spikes were trained in a hippocampal-dependent operant behavior task, delayed-match-to-sample. Depth-electroencephalogram (EEG) was recorded during 5,562 trials among five rats, and within-subject analyses evaluated the impact of hippocampal spikes on short-term memory operations. Results Hippocampal spikes that occurred during memory retrieval strongly impaired performance (p < 0.001). However, spikes that occurred during memory encoding or memory maintenance did not affect performance in those trials. Hippocampal spikes also affected response latency, adding approximately 0.48 seconds to the time taken to respond (p < 0.001). Interpretation We found that focal IIS-related interference in cognition extends to structures in the limbic system, which required intrahippocampal recordings. Hippocampal spikes seem most harmful if they occur when hippocampal function is critical, extending human studies showing that cortical spikes are most disruptive during active cortical functioning. The cumulative effects of spikes could therefore impact general cognitive functioning. These results strengthen the argument that suppression of IISs may improve memory and cognitive performance in patients with epilepsy. ANN NEUROL 2010;67:250,257 [source]


Effects of suppressing negative memories on intrusions and autobiographical memory specificity

APPLIED COGNITIVE PSYCHOLOGY, Issue 3 2010
Elke Geraerts
This study examines whether avoidance of negative memories results in intrusions as well as reduced memory specificity. Healthy participants suppressed memories of either a negative or a neutral autobiographical event. Individuals who suppressed negative memories tended to demonstrate smaller increases in negative mood than those who did not suppress their negative target memory. Neither suppression nor valence of the to-be-suppressed memory predicted decreases in memory specificity. Target memory-related intrusions during autobiographical memory retrieval predicted larger reductions in specific memory recall. Our findings are discussed in terms of affect regulation and other accounts of over-general memory. Copyright © 2010 John Wiley & Sons, Ltd. [source]


A comparison of involuntary autobiographical memory retrievals

APPLIED COGNITIVE PSYCHOLOGY, Issue 9 2006
Christopher T. Ball
This study compared three different ways autobiographical memories are elicited involuntarily: (1) cued by an active goal common to memory and retrieval contexts in combination with sensory information associated with this goal-directed activity; (2) cued by sensory information that does not relate to goal-directed activity common to both memory and retrieval contexts; and (3) activated when no identifiable cue present in retrieval context. Two hundred and twenty eight participants recorded details of a single autobiographical memory that resulted naturally from a spontaneous, non-deliberate retrieval. Nearly all recorded memories described specific events (83%) with very few memories less than 7 days old (8%) and many memories more than 5 years old (44%). No significant differences resulted between the three retrieval types for the age, specificity or prior rehearsal of memories reported. However, the level of attention at retrieval was significantly more diffuse for retrievals without a clearly identifiable cue. The authors discuss the implications of these findings for current models of involuntary autobiographical memory retrieval. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Soft constraints in interactive behavior: the case of ignoring perfect knowledge in-the-world for imperfect knowledge in-the-head,,

COGNITIVE SCIENCE - A MULTIDISCIPLINARY JOURNAL, Issue 3 2004
Wayne D. Gray
Abstract Constraints and dependencies among the elements of embodied cognition form patterns or microstrategies of interactive behavior. Hard constraints determine which microstrategies are possible. Soft constraints determine which of the possible microstrategies are most likely to be selected. When selection is non-deliberate or automatic the least effort microstrategy is chosen. In calculating the effort required to execute a microstrategy each of the three types of operations, memory retrieval, perception, and action, are given equal weight; that is, perceptual-motor activity does not have a privileged status with respect to memory. Soft constraints can work contrary to the designer's intentions by making the access of perfect knowledge in-the-world more effortful than the access of imperfect knowledge in-the-head. These implications of soft constraints are tested in two experiments. In experiment 1 we varied the perceptual-motor effort of accessing knowledge in-the-world as well as the effort of retrieving items from memory. In experiment 2 we replicated one of the experiment 1 conditions to collect eye movement data. The results suggest that milliseconds matter. Soft constraints lead to a reliance on knowledge in-the-head even when the absolute difference in perceptual-motor versus memory retrieval effort is small, and even when relying on memory leads to a higher error rate and lower performance. We discuss the implications of soft constraints for routine interactive behavior, accounts of embodied cognition, and tool and interface design. [source]


Updating Heider's balance theory in consumer behavior: A Jewish couple buys a German car and additional buying,consuming transformation stories

PSYCHOLOGY & MARKETING, Issue 5 2001
Arch G. Woodside
Consumer researchers describe Heider's (1958) balance theory without showing how the theory relates to recent theoretical developments in consumer behavior. Empirical examination of the theory is also lacking in consumer-psychology literature. This article updates Heider's balance theory in consumer behavior by developing the theory's links to theories of perceptual, attitudinal, and behavior automaticity and controlled thinking (see Bargh, 1994; Bargh, Chen, & Burrows, 1996) and cognitive-experiential self-theory (Epstein, 1994). Propositions central for applying balance theory to consumer psychology link automatic-controlled memory retrievals and storytelling of unbalanced (i.e., paradoxical) situations that stimulate further thinking and action. Research using storytelling (e.g., see Fischer, 1999; Schank, 1990) methods aids in examining these theory developments empirically. © 2001 John Wiley & Sons, Inc. [source]


A comparison of involuntary autobiographical memory retrievals

APPLIED COGNITIVE PSYCHOLOGY, Issue 9 2006
Christopher T. Ball
This study compared three different ways autobiographical memories are elicited involuntarily: (1) cued by an active goal common to memory and retrieval contexts in combination with sensory information associated with this goal-directed activity; (2) cued by sensory information that does not relate to goal-directed activity common to both memory and retrieval contexts; and (3) activated when no identifiable cue present in retrieval context. Two hundred and twenty eight participants recorded details of a single autobiographical memory that resulted naturally from a spontaneous, non-deliberate retrieval. Nearly all recorded memories described specific events (83%) with very few memories less than 7 days old (8%) and many memories more than 5 years old (44%). No significant differences resulted between the three retrieval types for the age, specificity or prior rehearsal of memories reported. However, the level of attention at retrieval was significantly more diffuse for retrievals without a clearly identifiable cue. The authors discuss the implications of these findings for current models of involuntary autobiographical memory retrieval. Copyright © 2006 John Wiley & Sons, Ltd. [source]


An Activation-Based Model of Sentence Processing as Skilled Memory Retrieval

COGNITIVE SCIENCE - A MULTIDISCIPLINARY JOURNAL, Issue 3 2005
Richard L. Lewis
Abstract We present a detailed process theory of the moment-by-moment working-memory retrievals and associated control structure that subserve sentence comprehension. The theory is derived from the application of independently motivated principles of memory and cognitive skill to the specialized task of sentence parsing. The resulting theory construes sentence processing as a series of skilled associative memory retrievals modulated by similarity-based interference and fluctuating activation. The cognitive principles are formalized in computational form in the Adaptive Control of Thought,Rational (ACT,R) architecture, and our process model is realized in ACT,R. We present the results of 6 sets of simulations: 5 simulation sets provide quantitative accounts of the effects of length and structural interference on both unambiguous and garden-path structures. A final simulation set provides a graded taxonomy of double center embeddings ranging from relatively easy to extremely difficult. The explanation of center-embedding difficulty is a novel one that derives from the model' complete reliance on discriminating retrieval cues in the absence of an explicit representation of serial order information. All fits were obtained with only 1 free scaling parameter fixed across the simulations; all other parameters were ACT,R defaults. The modeling results support the hypothesis that fluctuating activation and similarity-based interference are the key factors shaping working memory in sentence processing. We contrast the theory and empirical predictions with several related accounts of sentence-processing complexity. [source]