Home About us Contact | |||
Medium Components (medium + component)
Selected AbstractsBiomass recycling from a riboflavin cultivation with B. subtilis: Lysis, extract production and testing as substrate in riboflavin cultivationBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2006Karlheinz Bretz Abstract Autolysis of riboflavin-producing B. subtilis can be induced by pH, lack of carbon source, and the buffer system. Stress factors like temperature shift or oxygen dearth enhance the autolysis process. After cultivation of a riboflavin-producing strain, the pH of the whole culture broth was adjusted to 6.5,7.5. At a temperature of 40°C, autolysis started after 1 h. Adding a defined amount of commercially available endo- and exo-proteases enhanced both auto- and proteo-lysis. Optimization of endo- and exo-protease concentrations and of the time increased the degree of proteolysis. Additionally, the amount of DNA and Protein trapped in the riboflavin crystals could be significantly reduced by autolysis. After autolysis, the cultivation broth was centrifuged and the supernatant was cross-flow filtrated with a cut off of 10 kDa. Using this autolysate instead of yeast extract as a medium component for riboflavin production with B. subtilis, a riboflavin yield of 77% was obtained in comparison with the standard cultivation on yeast extract. © 2006 Wiley Periodicals, Inc. [source] Reciprocal 13C-Labeling: A Method for Investigating the Catabolism of CosubstratesBIOTECHNOLOGY PROGRESS, Issue 2 2002Bjarke Christensen The principle of reciprocal labeling is to use a uniformly 13C-labeled substrate as the primary carbon source and a naturally labeled cosubstrate. Metabolites derived from a naturally labeled cosubstrate, in this case amino acids, can then be identified by their relatively lower content of 13C, and information on the degradation pathway can be deduced. The technique is based on GC,MS measurements of amino acid labeling patterns, making the technique well suited for investigating the relative importance of amino acid biosynthesis and amino acid uptake from the medium, as the 13C content of the amino acids incorporated into biomass is a direct measure of the amino acid biosyntheses. The technique is illustrated by the investigation of the degradation of phenoxyacetic acid, a medium component that is essential for production of penicillin V by Penicillium chrysogenum. Glucose was used as the uniformly labeled primary carbon source. [source] Improvement of L(+)-lactic acid production from cassava wastewater by Lactobacillus rhamnosus B 103JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 11 2010Luciana Fontes Coelho Abstract BACKGROUND:L(+)-Lactic acid is used in the pharmaceutical, textile and food industries as well as in the synthesis of biodegradable plastics. The aim of this study was to investigate the effects of different medium components added in cassava wastewater for the production of L(+)-lactic acid by Lactobacillus rhamnosus B 103. RESULTS: The use of cassava wastewater (50 g L,1 of reducing sugar) with Tween 80 and corn steep liquor, at concentrations (v/v) of 1.27 mL L,1 and 65.4 mL L,1 respectively led to a lactic acid concentration of 41.65 g L,1 after 48 h of fermentation. The maximum lactic acid concentration produced in the reactor after 36 h of fermentation was 39.00 g L,1 using the same medium, but the pH was controlled by addition of 10 mol L,1 NaOH. CONCLUSION: The use of cassava wastewater for cultivation of L. rhamnosus is feasible, with a considerable production of lactic acid. Furthermore, it is an innovative proposal, as no references were found in the scientific literature on the use of this substrate for lactic acid production. Copyright © 2010 Society of Chemical Industry [source] Statistical optimization of medium components for extracellular protease production by an extreme haloarchaeon, Halobacterium sp.LETTERS IN APPLIED MICROBIOLOGY, Issue 1 2009SP1(1) Abstract Aims:, Optimization of medium components for extracellular protease production by Halobacterium sp. SP1(1) using statistical approach. Methods and Results:, The significant factors influencing the protease production as screened by Plackett,Burman method were identified as soybean flour and FeCl3. Response surface methodology such as central composite design was applied for further optimization studies. The concentrations of medium components for higher protease production as optimized using this approach were (g l,1): NaCl, 250; KCl, 2; MgSO4, 10; tri-Na-citrate, 1·5; soybean flour, 10 and FeCl3, 0·16. This statistical optimization approach led to production of 69·44 ± 0·811 U ml,1 of protease. Conclusions:, Soybean flour and FeCl3 were identified as important factors controlling the production of extracellular protease by Halobacterium sp. SP1(1). The statistical approach was found to be very effective in optimizing the medium components in manageable number of experimental runs with overall 3·9-fold increase in extracellular protease production. Significance and Impact of the Study:, The present study is the first report on statistical optimization of medium components for production of haloarchaeal protease. The study also explored the possibility of using extracellular protease produced by Halobacterium sp. SP1(1) for various applications like antifouling coatings and fish sauce preparation using cheaper raw material. [source] Application of near-infrared (NIR) spectroscopy for screening of raw materials used in the cell culture medium for the production of a recombinant therapeutic proteinBIOTECHNOLOGY PROGRESS, Issue 2 2010Alime Ozlem Kirdar Abstract Control of raw materials based on an understanding of their impact on product attributes has been identified as a key aspect of developing a control strategy in the Quality by Design (QbD) paradigm. This article presents a case study involving use of a combined approach of Near-infrared (NIR) spectroscopy and Multivariate Data Analysis (MVDA) for screening of lots of basal medium powders based on their impact on process performance and product attributes. These lots had identical composition as per the supplier and were manufactured at different scales using an identical process. The NIR/MVDA analysis, combined with further investigation at the supplier site, concluded that grouping of medium components during the milling and blending process varied with the scale of production and media type. As a result, uniformity of blending, impurity levels, chemical compatibility, and/or heat sensitivity during the milling process for batches of large-scale media powder were deemed to be the source of variation as detected by NIR spectra. This variability in the raw materials was enough to cause unacceptably large variability in the performance of the cell culture step and impact the attributes of the resulting product. A combined NIR/MVDA approach made it possible to finger print the raw materials and distinguish between good and poor performing media lots. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Efficient experimental design and micro-scale medium enhancement of 6-deoxyerythronolide B production through Escherichia coliBIOTECHNOLOGY PROGRESS, Issue 5 2009Michael Pistorino Abstract The recent use of heterologous hosts to produce natural products has shown significant potential, although limitations still exist regarding optimal production titers. In this study, we utilize micro-scale cultures and well-defined screening methods to identify key medium components that influence the heterologous production of the complex polyketide 6-deoxyerythronolide B (6dEB) through E. coli. It was determined that tryptone had a significant effect on 6dEB production and could supplement substrate requirements and improve recombinant protein levels of the essential deoxyerythronolide B synthase (DEBS) which catalyze 6dEB conversion. As a result, the study (1) demonstrates the feasibility of micro-scale cultures to study E. coli 6dEB production and effectively model larger-scale cultures; (2) identifies an enhanced medium which generates over 160 mg L,1 6dEB (a 22-fold improvement over current culture media); and (3) provides new insight and understanding related to the heterologous production of 6dEB from E. coli. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |