Medium Access Control (medium + access_control)

Distribution by Scientific Domains


Selected Abstracts


Neural bandwidth allocation function (NBAF) control scheme at WiMAX MAC layer interface

INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 9 2007
Mario Marchese
Abstract The paper proposes a bandwidth allocation scheme to be applied at the interface between upper layers (IP, in this paper) and Medium Access Control (MAC) layer over IEEE 802.16 protocol stack. The aim is to optimally tune the resource allocation to match objective QoS (Quality of Service) requirements. Traffic flows characterized by different performance requirements at the IP layer are conveyed to the IEEE 802.16 MAC layer. This process leads to the need for providing the necessary bandwidth at the MAC layer so that the traffic flow can receive the requested QoS. The proposed control algorithm is based on real measures processed by a neural network and it is studied within the framework of optimal bandwidth allocation and Call Admission Control in the presence of statistically heterogeneous flows. Specific implementation details are provided to match the application of the control algorithm by using the existing features of 802.16 request,grant protocol acting at MAC layer. The performance evaluation reported in the paper shows the quick reaction of the bandwidth allocation scheme to traffic variations and the advantage provided in the number of accepted calls. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Stability analysis of an adaptive packet access scheme for mobile communication systems with high propagation delays

INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 2 2003
Giovanni Giambene
Abstract In this paper, we investigate a packet access scheme that is able to support mixed traffics in the presence of high propagation delays. Referring to a Time-Code Division Multiple Access air interface, we propose a Medium Access Control (MAC) protocol based on a random access scheme. A successful attempt grants the use of a slot-code resource. This protocol is named Adaptive Time Code-Packet Reservation Multiple Access (ATC-PRMA), since the access parameters are changed, depending on the traffic load conditions, so as to fulfil Quality of Service requirements. Numerical examples are carried out for the Low Earth Orbit (LEO)- Mobile Satellite System (MSS) scenario, but all these considerations could be applied to High-Altitude Platform Stations (HAPSs) as well. In both cases, high propagation delays prevent an immediate feedback to users. An analytical approach is proposed to study the stability of our MAC scheme. Accordingly, we define a criterion for optimizing system performance. The predicted ATC-PRMA behaviour is supported by simulation results. Finally, we show the performance improvement of ATC-PRMA with respect to a MAC protocol not employing adaptive parameters. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Design of multichannel MAC protocols for wireless ad hoc networks

INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, Issue 5 2009
Shou-Chih Lo
Medium access control (MAC) protocols coordinate channel access between wireless stations, and they significantly affect the network throughput of wireless ad hoc networks. MAC protocols that are based on a multichannel model can increase the throughput by enabling more simultaneous transmission pairs in the network. In this paper, we comprehensively compare different design methods for multichannel MAC protocols. We classify existing protocols into different categories according to the channel negotiation strategies they employ. The common problems that may be encountered in multichannel design are discussed. We then propose a hybrid protocol that combines the advantages of the two methods of a common control channel and a common control period. The simulation results show that our proposed protocol can significantly outperform two representative protocols. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Performance analysis of IEEE 802.11 DCF with stochastic reward nets,

INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 3 2007
R. Jayaparvathy
Abstract In this paper, we present a performance study to evaluate the mean delay and the average system throughput of IEEE 802.11-based wireless local area networks (WLANs). We consider the distributed co-ordination function (DCF) mode of medium access control (MAC). Stochastic reward nets (SRNs) are used as a modelling formalism as it readily captures the synchronization between events in the DCF mode of access. We present a SRN-based analytical model to evaluate the mean delay and the average system throughput of the IEEE 802.11 DCF by considering an on,off traffic model and taking into account the freezing of the back-off counter due to channel capture by other stations. We also compute the mean delay suffered by a packet in the system using the SRN formulation and by modelling each station as an M/G/1 queue. We validate our analytical model by comparison with simulations. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Efficient integration of isochronous and data bursty traffics in low earth orbit-mobile satellite systems,

INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 3 2002
Alessandro Andreadis
Abstract This paper focuses on the radio resource management in low earth orbit-mobile satellite systems (LEO-MSSs) based on a time division multiple access (TDMA) air interface. A novel demand,assignment medium access control (MAC) protocol, named DRAMA+ (dynamic resource assignment multiple access,enhanced version), is proposed, where voice and Web traffic sources obtain transmission slots through requests sent by means of a random access phase. The round-trip propagation delay (RTD) of LEO-MSSs prevents an immediate feedback for each transmission attempt. Therefore, the main concern of the DRAMA+ scheme is to realize an efficient access phase. All the transmission requests successfully received at the satellite are managed by an on board scheduler. We have shown that DRAMA+ outperforms other techniques appeared in the literature in terms of voice quality, transmission delays for bursty data traffics and resource utilization. Moreover, a performance analysis of an ideal version of the DRAMA+ scheme has permitted us to prove the potentialities of the proposed DRAMA+ technique. Stability issues have been addressed as well as the impact on the DRAMA+ performance of the LEO satellite constellation RTD value. Copyright © 2002 John Wiley & Sons, Ltd. [source]