Median Lethal Dose (median + lethal_dose)

Distribution by Scientific Domains


Selected Abstracts


Toxicity of oral exposure to 2,4,6-trinitrotoluene in the western fence lizard (Sceloporus occidentalis),

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2008
Craig A. McFarland
Abstract Contamination of the soil with the explosive 2,4,6-trinitrotoluene (TNT) has been found at military sites, many of which are habitats used by reptiles. To provide data useful in assessing ecological risk for reptilian species, acute, subacute, and subchronic oral toxicity studies were conducted with the western fence lizard (Sceloporus occidentalis). Oral median lethal dose (LD50) values for TNT in corn oil were 1,038 and 1,579 mg/kg of body weight for male and female lizards, respectively. Overt signs of toxicity included chromaturia, abdominal enlargement, and tremors. A 14-d subacute study followed in which male lizards were orally dosed with TNT (corn oil) at 0, 33, 66, 132, 263, 525, and 1,050 mg/kg of body weight each day. Clinical signs of toxicity, while similar to the LD50 study, were more subtle and noted in lizards receiving TNT amounts of at least 66 mg/kg/d. Chromaturia was an early consistent sign, often preceding the onset of adverse effects. Male lizards in the 60-d subchronic study were dosed at 0, 3, 15, 25, 35, and 45 mg/kg/d with nearly complete survival (>90%) for lizards in all treatments. Changes in food consumption and body weight were observed at 35 and 45 mg/kg/d. Alterations in hematological end points; blood chemistries (albumin, total protein, alkaline phosphatase, calcium); kidney, spleen, and liver weights; and adverse histopathology were observed in lizards exposed at 25 to 45 mg/kg/d. Testosterone concentration, sperm count, and motility were variable between treatments. Although not significant, incidences of hypospermia and testicular atrophy were observed in some individuals. Together, these data suggest a lowest-observed-adverse effect level of 25 mg/kg/d and a no-observed-adverse effect level of 15 mg/kg/d in S. occidentalis. [source]


Dose-related effects following oral exposure of 2,4-dinitrotoluene on the western fence lizard, Sceloporus occidentalis

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2008
Jamie G. Suski
Abstract 2,4-dintitrotoluene (2,4-DNT) is an explosive frequently found in the soil of military installations. Because reptiles can be common on these sites, ecological risk assessments for compounds such as 2,4-DNT could be improved with toxicity data specific to reptiles. Western fence lizards, Sceloporus occidentalis, were used to develop a laboratory toxicity model for reptiles. A hierarchical approach was used; acute to subchronic studies were conducted to provide toxicity data relevant to short- and long-term exposures. First, a modified median lethal dose (LD50) study was conducted on male and female lizards using a stage-wise probit model. The LD50 was 577 mg/kg for female and 380 mg/kg for male lizards. Subsequently, a subacute experiment was conducted to further assess 2,4-DNT toxicity to male lizards and to define exposure levels for a longer term, subchronic study. The subchronic study was conducted for 60 consecutive days; male lizards were exposed to 0, 9, 15, 25, 42, 70 mg/kg/d. Dose-dependent mortality was observed in the three highest dose groups (25, 42, and 70 mg/kg/d); all other animals survived the study duration. Benchmark dose model calculations based on mortality indicated a 5% effect level of 15.8 mg/kg/d. At study termination, a gross necropsy was performed, organ weights were taken, and blood was collected for clinical and hematological analysis. Body weight, kidney weight, food consumption, postdose observations, and blood chemistries all were found to be significantly different from controls at doses above 9 mg/kg/d. Also, preliminary results suggest behavioral observations, and reduced food consumption may be a sensitive indicator of toxicity. The present study indicates Sceloporus occidentalis is suitable for evaluating toxicity of compounds to reptilian species. [source]


Effects of an organophosphorous insecticide on survival, fecundity, and development of Hylyphantes graminicola (Sundevall) (Araneae: Linyphiidae)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2006
Lingling Deng
Abstract The effects of an organophosphorous insecticide, methamidophos, on fecundity and development of the spider Hylyphantes graminicola (Sundevall) (Araneae: Linyphiidae) were assessed under laboratory conditions. Susceptibility of adults of both sexes to the insecticide and its influence on fecundity of females and development of offspring were investigated. At 48 h after topical application in adults, the median lethal dose (LD50) and 10% lethal dose (LD10) were 0.35 and 0.12 ,g/spider, respectively, for males and 0.52 and 0.16 ,g/spider, respectively, for females. Methamidophos had detrimental effects on fecundity of females; number of eggs per clutch, total egg mass, and clutch size decreased significantly. The hatching rate of eggs from LD10-treated females was slightly higher than the rate in the controls, but the hatching rate of eggs from LD50-treated females was lower than the rate in the controls. However, no significant differences were observed in hatching time and development time across treatments. Development time of spiderlings from LD50-treated females was significantly longer than the time in the controls, and body sizes of the first spiderlings from insecticide-treated females were larger than those in the controls. However, matured offspring were smaller than those in the controls. It was concluded that methamidophos has long-term effects on H. graminicola, and that this may affect the development of spider populations in the field. [source]


In vivo distribution and metabolisation of 14C-imidacloprid in different compartments of Apis mellifera L

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2004
Séverine Suchail
Abstract In vivo distribution of the neonicotinoid insecticide, imidacloprid, was followed during 72 h in six biological compartments of Apis mellifera L: head, thorax, abdomen, haemolymph, midgut and rectum. Honeybees were treated orally with 100 µg of 14C-imidacloprid per kg of bee, a dose close to the median lethal dose. Elimination half-life of total radioactivity in honeybee was 25 h. Haemolymph was the compartment with the lowest and rectum that with the highest level of total radioactivity during the whole study, with a maximum 24 h after treatment. Elimination half-life of imidacloprid in whole honeybee was 5 h. Imidacloprid was readily distributed and metabolised only by Phase I enzymes into five metabolites: 4/5-hydroxy-imidacloprid, 4,5-dihydroxy-imidacloprid, 6-chloronicotinic acid, and olefin and urea derivatives. The guanidine derivative was not detected. The urea derivative and 6-chloronicotinic acid were the main metabolites and appeared particularly in midgut and rectum. The olefin derivative and 4/5-hydroxy-imidacloprid preferentially occurred in head, thorax and abdomen, which are nicotinic acetylcholine receptor-rich tissues. Moreover, they presented a peak value around 4 h after imidacloprid ingestion. These results explain the prolongation of imidacloprid action in bees, and particularly the differences between rapid intoxication symptoms and late mortality. Copyright © 2004 Society of Chemical Industry [source]


Stereospecific activity of two glutamate analogs

CHIRALITY, Issue 9 2004
Juan Manuel Araujo Alvarez
Abstract Two glutamic acid analogs, (+)-(S)- and (,)-(R)-4-(2,2-diphenyl-1,3,2-oxazaborolidin-5-oxo)propionic acid ((+)-(S)- and (,)-(R)-Trujillon, respectively), were prepared. The stereospecific activity of their pharmacological properties was studied. The median convulsant dose (CD50) and median lethal dose (LD50) were analyzed in female Swiss Webster mice and their effects in vivo on unitary electrical activity in globus pallidus neurons were elucidated in male Wistar rats. Compounds were characterized by 1H, 13C, and 11B nuclear magnetic resonance. The LD50 of (+)-(S)-Trujillon was 449.08 mg/kg and it increased spontaneous motor activity, while with (,)-(R)-Trujillon there was no mortality up to 1,000 mg/kg and it decreased spontaneous motor activity. The CD50 in experiments with (+)-(S)-Trujillon was 199.34 mg/kg. Unitary recording in globus pallidus neurons showed i.v. administration (+)-(S)-Trujillon (50 mg/kg) increased frequency 79.0 ± 23.0% in relation to basal response. (,)-(R)-Trujillon and (+)-(S)-glutamate (50 mg/kg each) did not provoke changes in spontaneous basal firing. Local infusion of (+)-(S)-Trujillon (1 nMol) increased spontaneous firing in most neurons tested by 269.0 ± 83.0% in relation to basal values. Intrapallidal infusion of (,)-(R)-Trujillon (1 nMol) and saline solution did not cause statistically significant changes in globus pallidus spiking. Results showed that (+)-(S)-Trujillon crosses the blood,brain barrier and has stereospecific activity. Chirality 16:586,591, 2004. © 2004 Wiley-Liss, Inc. [source]


Enhancement of the efficacy of erythromycin in multiple antibiotic-resistant gram-negative bacterial pathogens

JOURNAL OF APPLIED MICROBIOLOGY, Issue 3 2008
S. Saha
Abstract Aims:, To improve the efficacy of erythromycin, a hydrophobic antibiotic, against multiple antibiotic-resistant gram-negative bacterial pathogens by enhancing their outer membrane permeability. Methods and Results:, Fifty-one nonrepeat gram-negative bacterial pathogens of various genera, resistant to multiple antibiotics, including erythromycin, were selected by disc agar diffusion tests. The amphiphilic cationic steroid antibiotic, Ceragenin CSA-13, a potent permeabilizer of bacterial outer membranes, reduced the minimum inhibitory concentration of erythromycin in 92% of the bacterial pathogens selected for the test, when supplemented with erythromycin. A synergistic effect of Ceragenin CSA-13 and erythromycin in combination was also observed. Spectrofluorimetric study confirmed that Ceragenin CSA-13 acts by depolarizing the bacterial outer membrane. The toxicity of Ceragenin CSA-13 was evaluated to be insignificant by measuring ,median lethal dose' (LD50) on mouse model. Conclusions:, Ceragenin CSA-13 may be useful as an agent to make erythromycin effective against infections caused by multiple antibiotic resistant gram-negative bacteria. Significance and Impact of the Study:, The outcome of the study suggests erythromycin,Ceragenin combination as a new approach to overcome the problem associated with the rapid emergence of multi-drug-resistant pathogens. The insignificant toxicity of Ceragenin CSA-13, as found, supports the possibility of the application of this compound for human therapeutics. [source]


Experimental acute respiratory Burkholderia pseudomallei infection in BALB/c mice

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 1 2009
Mark S. Lever
Summary Burkholderia pseudomallei is the causative agent of melioidosis, which is considered a potential deliberate release agent. The objective of this study was to establish and characterise a relevant, acute respiratory Burkholderia pseudomallei infection in BALB/c mice. Mice were infected with 100 B. pseudomallei strain BRI bacteria by the aerosol route (approximately 20 median lethal doses). Bacterial counts within lung, liver, spleen, brain, kidney and blood over 5 days were determined and histopathological and immunocytochemical profiles were assessed. Bacterial numbers in the lungs reached approximately 108 cfu/ml at day 5 post-infection. Bacterial numbers in other tissues were lower, reaching between 103 and 105 cfu/ml at day 4. Blood counts remained relatively constant at approximately 1.0 × 102 cfu/ml. Foci of acute inflammation and necrosis were seen within lungs, liver and spleen. These results suggest that the BALB/c mouse is highly susceptible to B. pseudomallei by the aerosol route and represents a relevant model system of acute human melioidosis. [source]


The bioactivity-guided isolation and structural identification of toxic cucurbitacin steroidal glucosides from stemodia kingii

PHYTOCHEMICAL ANALYSIS, Issue 4 2006
Jeremy G. Allen
Abstract A histologically validated murine model for the ovine intoxication by Stemodia kingii was used as a bioassay to guide the isolation of several groups of toxins from Stemodia kingii. Two of the toxins from one group were purified sufficiently to allow structural analysis and a determination of their median lethal doses (LD50) for oral administration to mice. A combination of acid hydrolysis, elemental analysis, HPLC-MS, 1D-NMR (1H, 13C) and 2D-NMR (1H,1H COSY, 13C,1H HSQC and HMBC, and gNOESY) was used to define stemodiosides B3 and B4 as cucurbitacin steroidal glucosides. Thus stemodioside B3 is (24Z)-3, -(, -glucopyranosyloxy)-2,,20,27-trihydroxy-19-(10,9,)- abeo -10, -lanost-5,24-diene-11-one and stemodioside B4 is (23E)-3, -(, -glucopyranosyloxy)-2,,20,22,27-tetrahydroxy-19-(10,9,)- abeo -10, -lanost-5,23-diene-11-one. The approximate oral LD50s for stemodiosides B3 and B4 in mice were estimated to be 99 and 42 mg/kg body weight, respectively. Copyright © 2006 John Wiley & Sons, Ltd. [source]