Mean Fork Length (mean + fork_length)

Distribution by Scientific Domains


Selected Abstracts


Effects of radio-transmitter antenna length on swimming performance of juvenile rainbow trout

ECOLOGY OF FRESHWATER FISH, Issue 4 2004
K. J. Murchie
Abstract,,, Technological advances have lead to the production of micro radio-transmitters capable of being implanted in fish as small as c. 5 g. Although the actual tags are small, transmitters are equipped with long antennas that can increase drag and tangle in debris. We examined the effects of radio-transmitter antenna length on the swimming performance of juvenile rainbow trout, Oncorhynchus mykiss, (N = 156, mean mass = 34 g, mean fork length = 148 mm). Although we tested a variety of different antenna lengths up to a maximum of 300 mm, only the longest antenna significantly impaired swimming performance relative to control fish (P < 0.001). There was no difference in swimming performance between the sham (surgery, but no transmitter) and the control fish (handled, but no surgery), suggesting that the surgical procedure itself did not negatively affect the fish. Regression analysis, however, indicated that there was a significant decrease in swimming performance associated with increased antenna length (R2 = 0.11, P < 0.001). In addition, when held in laboratory tanks, fish with the three longest antennas (150, 225 and 300 mm) frequently became entangled with the standpipe. We suggest that researchers, under the guidance of the tag manufacturer, trim antennas to the shortest possible length required to detect fish in their specific study area. Antenna length is clearly an important issue for small fish, especially for species that inhabit complex habitats where antennas may become entangled, and where fish must attain speeds near limits of their swimming capacity. Resumen 1. Los avances tecnológicos han llevado a producir micro radio-trasmisores capaces de ser implantados en peces de muy pequeño tamaño (,5 g). Aunque las marcas actuales son pequeñas, los trasmisores están equipados con antenas largas que pueden llegar a enredarse en los restos de vegetación. Examinamos los efectos de la longitud de la antena sobre la rutina natatoria de juveniles de Oncorhynchus mykiss (n = 156, peso medio = 34 g, longitud furcal media = 148 mm). 2. Aunque analizamos varias longitudes de antena, hasta 300 mm, solamente las de mayor longitud alteraron la rutina natatoria en relación a los peces control (P < 0.001). No hubo diferencia en la rutina natatoria entre individuos bajo cirugía pero sin trasmisores respecto de los individuos control (manipulados pero sin cirugía) lo que sugiere que los procedimientos de cirugía no afectaron negativamente a los peces. Sin embargo, análisis de regresión indicaron un declive significativo en la rutina natatoria asociado a la longitud de la antena (R2 = 0.11, P < 0.001). Además, al ser mantenidos en tanques, los individuos con las tres antenas mas largas (150, 225, y 300 mm) frecuentemente se enredaron con las tuberías. 3. Sugerimos a los investigadores que, bajo la dirección de los productores de marcas y antenas, consideren el uso de las antenas más pequeñas que permitan detectar a los peces en sus respectivas áreas de estudio. La longitud de la antena es una cuestión importante para los pequeños peces, especialmente para especies en hábitats complejos donde las antenas pueden llegar a enredarse y donde los peces pueden alcanzar velocidades casi al limite de su capacidad natatoria. [source]


Functional response of juvenile pink and chum salmon: effects of consumer size and two types of zooplankton prey

JOURNAL OF FISH BIOLOGY, Issue 2 2007
J. H. Moss
Feeding rate experiments were conducted for pink salmon Oncorhynchus gorbuscha fry [mean fork length (LF) 39 mm], juveniles (103,104 mm LF) and juvenile chum salmon Oncorhynchus keta (106,107 mm LF). Fishes were presented with small copepod (Tisbi sp.) or larger mysid shrimp (Mysidopsis bahia) prey at varying densities ranging from 1 to 235 prey l,1 in feeding rate experiments conducted at water temperatures ranging from 10·5 to 12·0° C under high light levels and low turbidity conditions. Juvenile pink and chum salmon demonstrated a type II functional response to mysid and copepod prey. Mysid prey was readily selected by both species whereas the smaller bodied copepod prey was not. When offered copepods, pink salmon fry fed at a higher maximum consumption rate (2·5 copepods min,1) than larger juvenile pink salmon (0·4 copepods min,1), whereas larger juvenile chum salmon exhibited the highest feeding rate (3·8 copepods min,1). When feeding on mysids, the maximum feeding rate for larger juvenile pink (12·3 mysids min,1) and chum (11·5 mysids min,1) salmon were similar in magnitude, and higher than feeding rates on copepods. Functional response models parameterized for specific sizes of juvenile salmon and zooplankton prey provide an important tool for linking feeding rates to ambient foraging conditions in marine environments, and can enable mechanistic predictions for how feeding and growth should respond to spatial-temporal variability in biological and physical conditions during early marine life stages. [source]


Swimming activity and energetic expenditure of captive rainbow trout Oncorhynchus mykiss (Walbaum) estimated by electromyogram telemetry

AQUACULTURE RESEARCH, Issue 6 2000
S J Cooke
Rainbow trout Oncorhynchus mykiss (Walbaum) are usually cultured at high densities to maximize production, but little is known about the physiological and behavioural consequences of high-density fish culture. The purpose of this study was to develop quantitative correlates of activity for fish held under conditions of increasing density. Fifteen hatchery-reared rainbow trout (mean fork length = 432.3 ± 9.2 mm) were implanted with activity (electromyogram; EMGi) transmitters and randomly assigned to each of three replicate tanks. Original tank densities (15 kg m,3) were then increased to 30 and finally to 60 kg m,3 at weekly intervals by adding additional fish. Remote telemetry signals indicated that activity increased with increasing stocking density. Fish were relatively inactive during the middle of the day, with diel activity patterns not differing among treatments. Fish were more active during periods of darkness, with activity increasing with increasing stocking density. Relationships between swimming speed, EMGi activity and oxygen consumption were developed using a respirometer and used to estimate oxygen consumption of the fish in the density treatments. Average oxygen consumption estimates increased with increasing density treatments as follows: low density = 75.6 mg kg,1 h,1; medium density = 90.0 mg kg,1 h,1; and high density = 102.6 mg kg,1 h,1. Telemetry permits quantification of the effects of increasing density on fish activity. Physiological telemetry devices may provide a useful tool for remotely monitoring animal welfare correlates under controlled conditions for fish exposed to different husbandry conditions and may prove a valuable tool for the aquaculture industry. [source]


Survival of sea-water-adapted trout, Salmo trutta L. ranched in a Danish fjord

FISHERIES MANAGEMENT & ECOLOGY, Issue 4 2000
S. S. Pedersen
The effect of seawater adaptation on the survival of coastally released post-smolt trout, Salmo trutta L., was investigated by release: (1) directly (with no adaptation); (2) after retention in net pens in the sea for 29,131 days (delayed release); (3) after feeding with a high-salt diet (12,13.5% NaCl) for 4 weeks; and (4) after a combination of (2) and (3). In total, 17 640 trout (age = 1+, 1.5 and 2+ years; mean fork lengths = 18.2,25.6 cm) were released in 14 batches in the summer or autumn months of 1986,1989. All fish were of domesticated origin and Carlin tagged. Survival and instantaneous mortality rates (total and fishing mortality) were estimated from reported recaptures. Mortality rates were estimated for: (1) the post-smolt period; (2) the period until the legal size of capture (40 cm) was attained; and (3) for larger sea-trout. Release with a delay of 4 weeks gave an increased survival rate. A longer adaptation period did not increase survival. On average, survival was increased by 36%. Survival was not increased by high-salt diets. Until attainment of the legal size for capture, survival was 9.6% higher on average, with extremes as low as 1.7% and as high as 38% in individual batches. [source]