Home About us Contact | |||
Methionine
Kinds of Methionine Terms modified by Methionine Selected AbstractsProtein methylation in full length Chlamydomonas flagellaCYTOSKELETON, Issue 8 2009Roger D. Sloboda Abstract Post-translational protein modification occurs extensively in eukaryotic flagella. Here we examine protein methylation, a protein modification that has only recently been reported to occur in flagella [Schneider MJ, Ulland M, Sloboda RD.2008. Mol Biol Cell 19(10):4319,4327.]. The cobalamin (vitamin B12) independent form of the enzyme methionine synthase (MetE), which catalyzes the final step in methionine production, is localized to flagella. Here we demonstrate, using immunogold scanning electron microscopy, that MetE is bound to the outer doublets of the flagellum. Methionine can be converted to S-adenosyl methionine, which then serves as the methyl donor for protein methylation reactions. Using antibodies that recognize symmetrically or asymmetrically methylated arginine residues, we identify three highly methylated proteins in intact flagella: two symmetrically methylated proteins of about 30 and 40 kDa, and one asymmetrically methylated protein of about 75 kDa. Several other relatively less methylated proteins could also be detected. Fractionation and immunoblot analysis shows that these proteins are components of the flagellar axoneme. Immunogold thin section electron microscopy indicates that the symmetrically methylated proteins are located in the central region of the axoneme, perhaps as components of the central pair complex and the radial spokes, while the asymmetrically methylated proteins are associated with the outer doublets. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source] Electrocatalytic Oxidation of Sulfur Containing Amino Acids at Renewable Ni-Powder Doped Carbon Ceramic Electrode: Application to Amperometric Detection L -Cystine, L -Cysteine and L -MethionineELECTROANALYSIS, Issue 21 2006Abdollah Salimi Abstract A sol-gel technique was used here to prepare a renewable carbon ceramic electrode modified with nickel powder. Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple due to Ni(II)/Ni(III) system with surface confined characteristics. The modified electrode shows excellent catalytic activity toward L -cystine, L -cysteine and L -methionine oxidation at reduced overpotential in alkaline solutions. In addition the antifouling properties at the modified electrode toward the above analytes and their oxidation products increases the reproducibility of results. L -cystine, L -cysteine and L -methionine were determined chronoamperometricaly at the surface of this modified electrode at pH range 9,13. Under the optimized conditions the calibration curves are linear in the concentration range 1,450,,M, 2,90,,M and 0.2,75,,M for L -cystine, L -methionine and L -cysteine determination, respectively. The detection limit and sensitivity were 0.64,,M, 3.8,nA/ ,M for L -cystine, 2,,M, 5.6,nA/ ,M for L -methionine and 0.2,,M and 8.1,nA/,M for L -cysteine. The advantageous of this modified electrode is high response, good stability and reproducibility, excellent catalytic activity for oxidation inert molecules at reduced overpotential and possibility of regeneration of the electrode surface by potential cycling for 5,minutes. Furthermore, the modified electrode has been prepared without using specific reagents. This sensor can be used as an amperometric detector for disulfides detection in chromatographic or flow systems. [source] Access to Any Site-Directed Isotopomer of Methionine, Selenomethionine, Cysteine, and Selenocysteine , Use of Simple, Efficient Modular Synthetic Reaction Schemes for Isotope IncorporationEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 13 2004Arjan H. G. Siebum Abstract Simple modular reaction schemes that allow access to any isotopomer of protected serine and homoserine have been worked out. These systems could be simply converted into cysteine, selenocysteine, homocysteine, homoselenocysteine, the essential amino acid methionine, and selenomethionine by Mitsunobu chemistry. These sulfur- and selenium-containing amino acids fulfil many essential roles in the living organism. In addition, homoserine could be converted in a few steps into optically active L -vinylglycine. As well as the stable isotopes 13C, 15N, 17O, and 18O, the radioactive isotopes of sulfur, selenium and carbon can also be easily introduced in a site-directed fashion. In view of the wide scope of the Mitsunobu reaction, we feel that many more important systems with the carbon skeleton of serine and homoserine should be preparable through this basic chemistry in any site-directed isotopically labeled form. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Sensory aroma from Maillard reaction of individual and combinations of amino acids with glucose in acidic conditionsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 9 2008Kam Huey Wong Summary The aroma produced in glucose,amino acids (individual and in combination) Maillard reaction, under acidic conditions at 100 °C were determined and compared by trained panellist. Proline produced pleasant, flowery and fragrant aroma. Phenylalanine and tyrosine produced dried roses aroma. Alanine produced fruity and flowery odour, while aspartic acid and serine both produced pleasant, fruity aroma. Arginine, produced a pleasant, fruity and sour aroma at pH 5.2, but not at its natural pH. Glycine, lysine, threonine and valine produced a pleasant caramel-like odour. Isoleucine and leucine gave off a burnt caramel aroma. Methionine developed a fried potato odour. Cysteine and methionine produced savoury, meaty and soy sauce-like flavours. A combination of these amino acids produced different types of aroma, with the stronger note dominating the odour of the mixture. This study will help the prediction of flavour characteristics of hydrolysates from different protein sources. [source] Dietary amino acids fed in free form or as protein do differently affect amino acid absorption in a rat everted sac modelJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 5 2008J. A. Nolles Summary In the present study, the effect of free amino acid (FAA) diets on the intestinal absorption rate of methionine and leucine was studied ,ex vivo' with rats adapted for different periods of time to the diets, using the everted sac method. The adaptation period to the 21% FAA diet with an amino acid content based on casein was either, 0 (no adaptation, N-ADA), 5 (short-term adaptation, ST-ADA), or 26,33 days (long-term adaptation, LT-ADA). Within the ST-ADA and the LT-ADA groups, three different levels of methionine were included: 50%, 100% and 200% of the level normally present in casein. All diets were iso-nitrogenous and iso-caloric. After the adaptation period (0, 5, or 26,33 days), intestinal everted sacs were prepared. Methionine or leucine was added to the medium as transport substrate. The methionine absorption rate of the rats of the LT-ADA groups was higher than that of the N-ADA groups. Furthermore, adaptation to 200% dietary methionine levels caused a significantly slower leucine absorption compared to the 100%, and 50% group. Methionine absorption was similar in the 100% and 200% groups, but the absorption of methionine in the 50% group was enhanced in the distal part of the intestines. We concluded that in response diets with 21% FAAs as only amino acid source, amino acid absorption is decreased to avoid toxic effects of high levels of methionine in the circulation. [source] Effects of rumen-protected methionine in a low protein ration on metabolic traits and performance of early lactating cows as opposed to rations with elevated crude protein contentJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 5 2000T. F. Kröber Summary A 5-week experiment with 24 multiparous early lactating Brown Swiss cows was conducted to investigate the effects of supplementary rumen-protected methionine in conjunction with dietary protein reduction on metabolism and performance after 1 week of control measurement. Three rations containing 175, 150 and 125 g of crude protein/kg feed dry matter were supplemented with methionine. The fourth ration, also only containing 125 g of crude protein/kg dry matter, remained unsupplemented. The four treatment groups had a similar metabolic supply of other essential amino acids, protein and energy, as calculated by various approaches. The two low protein rations were, however, slightly deficient in ruminally degraded protein. Treatment effects remained low on feed intake, forage meal pattern, milk yield and fat as well as lactose content. In contrast, the content and yield of milk protein significantly declined only in the unsupplemented low protein ration relative to the initial value. Compared with this ration, the decline in milk protein yield was clearly delayed in the supplemented low protein ration. Blood plasma methionine tended to be reduced without supplementation and to be increased with additional methionine. Supplementation of methionine reduced other plasma amino acids. Plasma insulin, glucose, lactate, ketone bodies and aspartate amino transferase activity indicated a certain liver stress and a somewhat elevated energy requirement with high and particularly with low protein content (when unsupplemented). Methionine improved metabolic protein utilization, followed by the lowest plasma, urine and milk urea levels in the supplemented low protein diet. In conclusion, no major adverse effects were assessed under the conditions tested. Supplementation of methionine may nevertheless be useful in rations with particularly low protein content fed to early lactating cows in order to prevent negative long-term effects which were only visible here as trends. Zusammenfassung Auswirkungen von pansengeschütztem Methionin in einer Niedrigproteinration im Vergleich zu Rationen mit erhöhtem Rohproteingehalt auf Stoffwechselmerkmale und Leistung von frischlaktierenden Milchkühen In einem fünfwöchigen Experiment mit 24 frischlaktierenden Braunviehkühen wurden die Auswirkungen einer Ergänzung mit pansengeschütztem Methionin bei gleichzeitiger Reduktion der Proteinzufuhr nach einer einwöchigen Kontrollphase geprüft. Drei Rationen mit 175, 150 und 125 g Rohprotein/kg T wurden mit Methionin ergänzt. Eine weitere Variante, ebenfalls nur mit 125 g Rohprotein/kg T, wurde nicht supplementiert. Die vier Varianten stellten gemäß verschiedener Futterbewertungsysteme eine vergleichbare metabolische Versorgung mit den übrigen essentiellen Aminosäuren, Protein und Energie sicher. Die Niedrigproteinvarianten enthielten allerdings etwas zu wenig pansenabbaubares Protein. Futteraufnahme, Muster des Grundfutterverzehrs, Milchleistung sowie Fett-und Laktosegehalt der Milch zeigten nur geringe Reaktion auf die Behandlungen. Milchproteingehalt und -menge waren nur in der nicht ergänzten Niedrigproteinvariante relativ zum Ausgangswert signifikant verringert. Im Vergleich zur unsupplementierten Niedrigproteinration war dagegen der Abfall mit Ergänzung deutlich verzögert. Gegenüber dem Ausgangswert war die Methioninkonzentration im Blutplasma ohne Ergänzung tendenziell erniedrigt, mit Ergänzung erhöht. Es erfolgte eine Verringerung der Plasmakonzentration anderer Aminosäuren durch die Methioninergänzung der Niedrigproteinration. Die Plasmaniveaus von Insulin, Glucose, Laktat, Ketonkörpern und Aspartataminotransferase-Aktivität lassen auf eine gewisse Leberbelastung und einen etwas höheren Energiebedarf mit hohem und besonders mit niedrigem Proteingehalt (unsupplementiert) schließen. Die Zulage an Methionin verbesserte die metabolische Proteinverwertung, so dass die Harnstoffgehalte in Blut, Milch und Harn in dieser Niedrigproteinvariante am niedrigsten waren. Insgesamt ergaben sich keine grösseren ungünstigen Effekte unter den getesteten Bedingungen. Dennoch könnte die Ergänzung von Rationen mit besonders niedrigem Rohproteingehalt mit Methionin beim Einsatz an frischlaktierende Kühe hilfreich sein, um negative Langzeitwirkungen zu verhindern, die sich hier lediglich andeuteten. [source] Dual effect of DL -homocysteine and S -adenosylhomocysteine on brain synthesis of the glutamate receptor antagonist, kynurenic acidJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2005E. Luchowska Abstract Increased serum level of homocysteine, a sulfur-containing amino acid, is considered a risk factor in vascular disorders and in dementias. The effect of homocysteine and metabolically related compounds on brain production of kynurenic acid (KYNA), an endogenous antagonist of glutamate ionotropic receptors, was studied. In rat cortical slices, DL -homocysteine enhanced (0.1,0.5 mM) or inhibited (concentration inducing 50% inhibition [IC50] = 6.4 [5.5,7.5] mM) KYNA production. In vivo peripheral application of DL -homocysteine (1.3 mmol/kg intraperitoneally) increased KYNA content (pmol/g tissue) from 8.47 ± 1.57 to 13.04 ± 2.86 (P < 0.01; 15 min) and 11.4 ± 1.72 (P < 0.01; 60 min) in cortex, and from 4.11 ± 1.54 to 10.02 ± 3.08 (P < 0.01; 15 min) in rat hippocampus. High concentrations of DL -homocysteine (20 mM) applied via microdialysis probe decreased KYNA levels in rabbit hippocampus; this effect was antagonized partially by an antagonist of group I metabotropic glutamate receptors, LY367385. In vitro, S -adenosylhomocysteine acted similar to but more potently than DL -homocysteine, augmenting KYNA production at 0.03,0.08 mM and reducing it at ,0.5 mM. The stimulatory effect of S -adenosylhomocysteine was abolished in the presence of the L -kynurenine uptake inhibitors L -leucine and L -phenyloalanine. Neither the N -methyl- D -aspartate (NMDA) antagonist CGS 19755 nor L -glycine influenced DL -homocysteine- and S -adenosylhomocysteine-induced changes of KYNA synthesis in vitro. DL -Homocysteine inhibited the activity of both KYNA biosynthetic enzymes, kynurenine aminotransferases (KATs) I and II, whereas S -adenosylhomocysteine reduced only the activity of KAT II. L -Methionine and L -cysteine, thiol-containing compounds metabolically related to homocysteine, acted only as weak inhibitors, reducing KYNA production in vitro and inhibiting the activity of KAT II (L -cysteine) or KAT I (L -methionine). The present data suggest that DL -homocysteine biphasically modulates KYNA synthesis. This seems to result from conversion of compound to S -adenosylhomocysteine, also acting dually on KYNA formation, and in part from the direct interaction of homocysteine with metabotropic glutamate receptors and KYNA biosynthetic enzymes. It seems probable that hyperhomocystemia-associated brain dysfunction is mediated partially by changes in brain KYNA level. © 2004 Wiley-Liss, Inc. [source] C, -hydroxymethyl methionine: synthesis, optical resolution and crystal structure of its (+)- N, -benzoyl derivativeJOURNAL OF PEPTIDE SCIENCE, Issue 12 2001Renata Witkowska Abstract (R,S)-Methionine was transformed into C, -hydroxymethyl methionine by a route involving C, -hydroxymethylation of 2-phenyl-4-methylthioethyl-5-oxo-4,5-dihydro-1,3-oxazole. The absolute configuration of (,)- C, -hydroxymethyl methionine was elucidated to be (S) by chemical correlation with (S) (,)- C, -ethyl serine. Absolute structure determination (by single crystal X-ray diffraction) on N, -benzoyl- C, -hydroxymethyl methionine confirmed the (R)-configuration for the (+)-enantiomer. In addition, the X-ray diffraction analysis showed that the C,,, -disubstituted glycyl residue adopts the fully extended (C5) conformation. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd. [source] The effect of BDNF gene variants on asthma in German childrenALLERGY, Issue 12 2009S. Zeilinger Background:, Allergic inflammation can trigger neuronal dysfunction and structural changes in the airways and the skin. Levels of brain-derived neurotrophic factor (BDNF) are strongly up regulated at the location of allergic inflammation. Aim:, We systematically investigated whether polymorphisms in the BDNF gene influence the development or severity of asthma and atopic diseases. Methods:, The BDNF gene was screened for mutations in 80 chromosomes. Genotyping of six BDNF tagging polymorphisms was performed in a cross-sectional study population of 3099 children from Dresden and Munich (age 9,11 years, ISAAC II). Furthermore, polymorphisms were also investigated in an additional 655 asthma cases analysed with a random sample of 767 children selected from ISAAC II. Associations were calculated via chi-square test and anova using SAS Genetics and spss. Results:, We identified nine polymorphisms with minor allele frequency ,0.03, one of them leading to an amino acid change from Valine to Methionine. In the cross-sectional study population, no significant association was found with asthma or any atopic disease. However, when more severe asthma cases from the MAGIC study were analysed, significant asthma effects were observed with rs6265 (odds ratio 1.37, 95% confidence interval 1.14,1.64, P = 0.001), rs11030101 (OR 0.82, 95%CI 0.70,0.95, P = 0.009) and rs11030100 (OR 1.19, 95%CI 1.00,1.42, P = 0.05). Conclusions:, As in previous studies, effects of BDNF polymorphisms on asthma remain controversial. The data may suggest that BDNF polymorphisms contribute to severe forms of asthma. [source] Measurement of the ,34S value in methionine by double spike multi-collector thermal ionization mass spectrometry using Carius tube digestion,RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2010Jacqueline L. Mann Methionine is an essential amino acid and is the primary source of sulfur for humans. Using the double spike (33S- 36S) multi-collector thermal ionization mass spectrometry (MC-TIMS) technique, three sample bottles of a methionine material obtained from the Institute for Reference Materials and Measurements have been measured for ,34S and sulfur concentration. The mean ,34S value, relative to Vienna Canyon Diablo Troilite (VCDT), determined was 10.34,±,0.11, (n,=,9) with the uncertainty reported as expanded uncertainties (U). These ,34S measurements include a correction for blank which has been previously ignored in studies of sulfur isotopic composition. The sulfur concentrations for the three bottles range from 56 to 88,µg/g. The isotope composition and concentration results demonstrate the high accuracy and precision of the DS-MC-TIMS technique for measuring sulfur in methionine. Published in 2010 by John Wiley & Sons, Ltd. [source] Methionine Can Favor DNA Platination by trans -Coordinated Platinum Antitumor Drugs,ANGEWANDTE CHEMIE, Issue 45 2009Chan Li Schneller ans Ziel: Die Bindung von Methionin an trans -koordinierte Platinkomplexe führt zu einer drastisch beschleunigten Komplexierung mit DNA (siehe Schema). Platin-Methionin-Spezies wurden auch als Zwischenstufen in einem Zellsystem gebildet und könnten eine wichtige Rolle im Wirkmechanismus von trans -Komplexen spielen. [source] Progression of Lipid Peroxidation Measured as Thiobarbituric Acid Reactive Substances, Damage to DNA and Histopathological Changes in the Liver of Rats Subjected to a Methionine,Choline-Deficient DietBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 3 2009Alceu Afonso Jordao Male rats were divided into three groups, the first group receiving a control diet and the other two groups receiving a methionine,choline-deficient diet for 1 month (MCD1) and for 2 months (MCD2), respectively. The livers of the animals were collected for the determination of vitamin E, thiobarbituric acid reactive substances (TBARS), GSH concentration, DNA damages, and for histopathological evaluation. The hepatic TBARS and GSH content was higher (P < 0.05) in the groups receiving the experimental diet (MCD1 and MCD2) compared to control diet, and hepatic vitamin E concentration differed (P < 0.05) between the MCD1 and MCD2 groups, with the MCD2 group presenting a lower concentration. Damage to hepatocyte DNA was greater (P < 0.05) in the MCD2 group (262.80 DNA injuries/100 hepatocytes) compared to MCD1 (136.4 DNA injuries/100 hepatocytes) and control diet (115.83 DNA injuries/100 hepatocytes). Liver histopathological evaluation showed that steatosis, present in experimental groups was micro- and macro-vesicular and concentrated around the centrolobular vein, zone 3, with preservation of the portal space. The inflammatory infiltrate was predominantly periductal and the steatosis and inflammatory infiltrate was similar in the MCD1 and MCD2 groups, although the presence of Mallory bodies was greater in the MCD2 group. The study describes the contribution of a methionine,choline-deficient diet to the progression of steatosis, lipid peroxidation and hepatic DNA damage in rats, serving as a point of reflection about the role of these nutrients in the western diet and the elevated non-alcoholic steatohepatitis rates in humans. [source] Developmental plasticity varied with sex and position in hatching hierarchy in nestlings of the asynchronous European roller, Coracias garrulusBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010DESEADA PAREJO Allocation rules between ornamental and other functional traits of birds may differ among individuals and vary with environmental conditions. We supplemented roller (Coracias garrulus) nestlings with methionine in a between-nest design to investigate the way in which the sex and position in the hatching hierarchy affect the allocation of resources among growth, immunity, and plumage coloration. Methionine induces the production of lymphocytes at expense of growth; thus, we used it to manipulate growth and immunity, which are two traits likely to compromise plumage coloration. We predicted that late-hatched chicks within a brood (juniors) compared to early-hatched chicks (seniors) should allocate more to traits directly providing fitness than to ornamental traits because juniors are more affected than seniors by sibling competition. The methionine treatment effectively enhanced the production of lymphocytes in experimental broods. This appeared to be at the expense of plumage coloration in junior nestlings because, in supplemented nests, junior males showed a trend to display less greenish bellies than junior males from control nests. However, juniors from supplemented nests maintained wing growth as in control juniors. The plumage coloration of seniors was unaffected by the methionine supplementation, although they paid the costs of lymphocyte production at a level of growth that was reduced compared to senior nestlings in control nests. Hence, sex, and hatching order affected resource allocation among growth, immunity, and plumage coloration of roller nestlings. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 500,511. [source] Structure of Citrobacter freundiil -methionine ,-lyaseACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 6 2005D. V. Mamaeva l -Methionine ,-lyase (MGL) is a pyridoxal 5,-phosphate (PLP) dependent enzyme that catalyzes ,-elimination of l -methionine. The crystal structure of MGL from Citrobacter freundii has been determined at 1.9,Å resolution. The spatial fold of the protein is similar to those of MGLs from Pseudomonas putida and Trichomonas vaginalis. The comparison of these structures revealed that there are differences in PLP-binding residues and positioning of the surrounding flexible loops. [source] Synthesis of Cyclic ,-Amino Acid Esters from Methionine, Allylglycine, and Serine.CHEMINFORM, Issue 37 2004James Gardiner Abstract For Abstract see ChemInform Abstract in Full Text. [source] Immunomodulatory activity of a methionine aminopeptidase-2 inhibitor on B cell differentiationCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2009R. C. Priest Summary Methionine aminopeptidase-2 (MetAP-2) inhibitors have potent anti-angiogenesis activity and are being developed for the treatment of solid tumours. The recently observed specific expression of MetAP-2 in germinal centre B cells suggests that it has a role in regulating B cell function. We have demonstrated a potent MetAP-2-dependent inhibitory effect on the antibody secretion from B cell receptor and CD40 co-stimulated primary human B cells in the presence of interleukin-21. The effect of MetAP-2 inhibition on antibody secretion was due to a block in differentiation of B cells into plasma cells. Immunohistochemical analysis of germinal centres from human, mouse and marmoset spleen showed a similar expression pattern of MetAP-2 in the marmoset and man, whereas mouse spleen showed no detectable expression. In a marmoset, T dependent immunization model, the MetAP-2 inhibitor suppressed an antigen-specific antibody response. Furthermore, histological analysis showed loss of B cells in the spleen and disrupted germinal centre formation. These results provide experimental evidence to support a novel role for MetAP-2 in immunomodulation. These effects of MetAP-2 are mediated by disruption of the germinal centre reaction and a block in the differentiation of B cells into plasma cells. [source] L -Amino acid load to enhance PET differentiation between tumor and inflammation: an in vitro study on 18F-FET uptakeCONTRAST MEDIA & MOLECULAR IMAGING, Issue 5 2006S. Laïque Abstract Labeled amino acids (AA) are tumor tracers for use in nuclear medecine. O -(2-[18F]fluoroethyl)- L -tyrosine (FET) is transported by the L -system, known to function as an exchanger. In vitro utilization of FET, after a preload or prior to an afterload of non radioactive L -amino acids, was evaluated in order to measure the potential effects of AA content on the distinction between tumor and inflammatory lesions. Cellular uptake of FET was studied on rat osteosarcoma cells (ROS 17/2.8) and human leukocytes, initially loaded with nonradioactive L -tyrosine or L -methionine. FET efflux was evaluated from cells loaded with nonradioactive L -phenylalanine after tracer uptake. ROS 17/2.8 showed a higher sensitivity to preload and afterload effects on cellular FET content as compared with the leukocytes. We conclude that preload with L -tyrosine, prior to the administration of FET, may be a potential procedure to improve PET differentiation between tumor and inflammatory lesions. Copyright © 2006 John Wiley & Sons, Ltd. [source] Gel growth and characterization of , -DL-methionineCRYSTAL RESEARCH AND TECHNOLOGY, Issue 4 2006E. Ramachandran Abstract DL-Methionine [C5H11NO2S] is one of the essential amino acids in humans. It has two crystalline forms, viz., ,- and ,- methionine. In the present study, , - form is crystallized in silica gel; under suitable pH conditions by single diffusion method. The grown crystals were characterized by density measurement and single crystal X-ray diffraction. Fourier transform infrared (FTIR) spectroscopic studies, thermal analysis and scanning electron microscopic (SEM) studies were also made as part of the structural studies. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Protein methylation in full length Chlamydomonas flagellaCYTOSKELETON, Issue 8 2009Roger D. Sloboda Abstract Post-translational protein modification occurs extensively in eukaryotic flagella. Here we examine protein methylation, a protein modification that has only recently been reported to occur in flagella [Schneider MJ, Ulland M, Sloboda RD.2008. Mol Biol Cell 19(10):4319,4327.]. The cobalamin (vitamin B12) independent form of the enzyme methionine synthase (MetE), which catalyzes the final step in methionine production, is localized to flagella. Here we demonstrate, using immunogold scanning electron microscopy, that MetE is bound to the outer doublets of the flagellum. Methionine can be converted to S-adenosyl methionine, which then serves as the methyl donor for protein methylation reactions. Using antibodies that recognize symmetrically or asymmetrically methylated arginine residues, we identify three highly methylated proteins in intact flagella: two symmetrically methylated proteins of about 30 and 40 kDa, and one asymmetrically methylated protein of about 75 kDa. Several other relatively less methylated proteins could also be detected. Fractionation and immunoblot analysis shows that these proteins are components of the flagellar axoneme. Immunogold thin section electron microscopy indicates that the symmetrically methylated proteins are located in the central region of the axoneme, perhaps as components of the central pair complex and the radial spokes, while the asymmetrically methylated proteins are associated with the outer doublets. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source] Electrocatalytic Oxidation of Sulfur Containing Amino Acids at Renewable Ni-Powder Doped Carbon Ceramic Electrode: Application to Amperometric Detection L -Cystine, L -Cysteine and L -MethionineELECTROANALYSIS, Issue 21 2006Abdollah Salimi Abstract A sol-gel technique was used here to prepare a renewable carbon ceramic electrode modified with nickel powder. Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple due to Ni(II)/Ni(III) system with surface confined characteristics. The modified electrode shows excellent catalytic activity toward L -cystine, L -cysteine and L -methionine oxidation at reduced overpotential in alkaline solutions. In addition the antifouling properties at the modified electrode toward the above analytes and their oxidation products increases the reproducibility of results. L -cystine, L -cysteine and L -methionine were determined chronoamperometricaly at the surface of this modified electrode at pH range 9,13. Under the optimized conditions the calibration curves are linear in the concentration range 1,450,,M, 2,90,,M and 0.2,75,,M for L -cystine, L -methionine and L -cysteine determination, respectively. The detection limit and sensitivity were 0.64,,M, 3.8,nA/ ,M for L -cystine, 2,,M, 5.6,nA/ ,M for L -methionine and 0.2,,M and 8.1,nA/,M for L -cysteine. The advantageous of this modified electrode is high response, good stability and reproducibility, excellent catalytic activity for oxidation inert molecules at reduced overpotential and possibility of regeneration of the electrode surface by potential cycling for 5,minutes. Furthermore, the modified electrode has been prepared without using specific reagents. This sensor can be used as an amperometric detector for disulfides detection in chromatographic or flow systems. [source] Electrocatalytic Oxidation of NADH by Oxidized s-Adenosyl-L-Methionine (SAMe): Application to NADH and SAMe DeterminationsELECTROANALYSIS, Issue 11 2004Noemí de-los-Santos-Álvarez Abstract s -Adenosyl- L -methionine (SAMe) is an adenosine analogue with therapeutical activity against affective disorders and liver dysfunctions. It can be oxidized on graphite electrode yielding a strongly adsorbed electroactive oxidation product for which a quinone-imine structure is proposed. This compound is capable of electrocatalyzing the NADH oxidation at low potentials, lowering the overvoltage by about 300,mV. An amperometric method for NADH determination at +0.1,V (Ag|AgCl|KClsat) is developed using an oxidized-SAMe-modified electrode in pH,9. Linear calibration plots were obtained with a detection limit of 2.4,nM. The electrode response time and the relative standard deviation of the slope of the calibration plot for 5 different modified electrodes were 12,s and 5.6% respectively. The catalytic scheme also provides the first method to determine SAMe itself by adsorptive differential pulse voltammetry. The linear range was found to be 42.4,424,nM with a reproducibility of 6.9%. The method was applied to SAMe determination in a pharmaceutical formulation. [source] Enhancement of Anodic Response for DMSO at Ruthenium Oxide Film Electrodes as a Result of Doping with Iron(III)ELECTROANALYSIS, Issue 2 2003Brett Abstract The oxidation of dimethyl sulfoxide (DMSO) to dimethyl sulfone (DMSO2) is representative of numerous anodic oxygen-transfer reactions of organosulfur compounds that suffer from slow kinetics at noble metal electrodes. Anodic voltammetric data for DMSO are examined at various RuO2 -film electrodes prepared by thermal deposition on titanium substrates. The response for DMSO is slightly larger at RuO2 films prepared in a flame as compared with films prepared in a furnace; however, temperature is more easily controlled in the furnace. Doping of the RuO2 films with Fe(III) further improves the sensitivity of anodic response for DMSO. Optimal response is obtained at an Fe(III)-doped RuO2 -film electrode prepared using a deposition solution of 50,mM RuCl3 and 10,mM FeCl3 in a 1,:,1 mixture of isopropanol and 12,M HCl at an annealing temperature of 450,°C. The Levich plot (i vs. ,1/2) and Koutecky-Levich plot (1/i vs. 1/,1/2) of amperometric data for the oxidation of DMSO at an Fe(III)-doped RuO2 -film electrode configured as a rotated disk are consistent with an anodic response controlled by mass-transport processes at low rotational velocities. Flow injection data demonstrate that Fe(III)-doped RuO2 -film electrodes exhibit detection capability for methionine and cysteine in addition to DMSO. Detection limits for 100-,L injections of the three compounds are ca. 3.2×10,4,mM, i.e., ca. 32,pmol. [source] Measurement of specific radioactivity in proteins separated by two-dimensional gel electrophoresisELECTROPHORESIS, Issue 5-6 2006Shaobo Zhou Abstract We report a method to quantify the specific radioactivity of proteins that have been separated by 2-DE. Gels are stained with SyproRuby, and protein spots are excised. The SyproRuby dye is extracted from each spot using DMSO, and the fluorescence is quantified automatically using a plate reader. The extracted gel piece is then dissolved in hydrogen peroxide and radioactivity is quantified by liquid scintillation counting. Gentle agitation with DMSO for 24,h was found to extract all the SyproRuby dye from gel fragments. The fluorescence of the extract was linearly related to the amount of BSA loaded onto a series of 1-D gels. When rat muscle samples were run on 2-DE gels, the fluorescence extracted from 54,protein spots showed a good correlation (r = 0.79, p < 0.001) with the corresponding spot intensity measured by conventional scanning and image analysis. DMSO extraction was found not to affect the amount of radioactive protein left in the gel. When a series of BSA solutions of known specific radioactivity were run on 2-DE gels, the specific radioactivity measured by the new method showed a good correlation (r = 0.98, p < 0.01, n = 5) with the specific radioactivity measured directly before loading. Reproducibility of the method was measured in a series of 2-DE gels containing proteins from the livers of rats and mice that had been injected with [35S]methionine. Variability tended to increase when the amount of radioactivity in the protein spot was low, but for samples containing at least 10,dpm above background the CV was around 30%, which is comparable to that obtained when measuring protein expression by conventional image analysis of SyproRuby-stained 2-DE gels. Similar results were obtained whether spots were excised manually or using a spot excision robot. This method offers a high-throughput, cost-effective and reliable method of quantifying the specific radioactivity of proteins from metabolic labelling experiments carried out in,vivo, so long as sufficient quantities of radioactive tracer are used. [source] S -Adenosyl methionine/S -adenosyl- L -homocysteine ratio determination by capillary electrophoresis employed as a monitoring tool for the antiviral effectiveness of adenosine analogsELECTROPHORESIS, Issue 10-11 2004Elena Sbrana Abstract S -Adenosyl- L -homocysteine hydrolase (SAHh) inhibitors have long been used as broad-range antivirals and have been recently evaluated as an experimental therapy of filovirus infections. In response to the need for a rapid laboratory testing method that could assess antiviral potency in vivo, our group developed a capillary electrophoresis (CE) method for the determination of the S -adenosyl- L -homocysteine (SAH) to S -adenosyl- L -methionine (SAM) ratio. After chloroacetaldehyde derivatization, SAH and SAM were detected using laser-induced fluorescence detection with a HeCd laser. Separation and quantitation of both SAH and SAM in human plasma were achieved in less than 1 min. The proposed method is rapid and reliable, and could be easily applied to routine monitoring of clinical and preclinical trials subjects. [source] 13C-breath tests for clinical investigation of liver mitochondrial functionEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 9 2010Ignazio Grattagliano Eur J Clin Invest 2010; 40 (9): 843,850 Abstract Background, Mitochondria play a major role in cell energetic metabolism; therefore, mitochondrial dysfunction inevitably participates in or even determines the onset and progression of chronic liver diseases. The assessment of mitochondrial function in vivo, by providing more insight into the pathogenesis of liver diseases, would be a helpful tool to study specific hepatic functions and to develop rational diagnostic, prognostic and therapeutic strategies. Design, This review focuses on the utility of breath tests to assess mitochondrial function in humans and experimental animals. Results, The introduction in the clinical setting of specific breath tests may allow elegantly and noninvasively overcoming the difficulties caused by previous complex techniques and might provide clinically relevant information, i.e the effects of drugs on mitochondria. Substrates meeting this requirement are alpha-keto-isocaproic acid and methionine that are both decarboxylated by mitochondria. Long-and medium-chain fatty acids that are metabolized through the Krebs cycle, and benzoic acid which undergoes glycine conjugation, may also reflect the function of mitochondria. Conclusions, Breath tests to assess in vivo mitochondrial function in humans represent a potentially useful diagnostic and prognostic tool in clinical investigation. [source] Compound heterozygosity of two missense mutations in the NADH-cytochrome b5 reductase gene of a Polish patient with type I recessive congenital methaemoglobinaemiaEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2003Dorota Grabowska Abstract: A case of type I methaemoglobinaemia observed in a Polish subject with compound heterozygosity for two mutations in the reduced nicotinamide adenine dinucleotide (NADH) cytochrome b5 reductase (b5R) gene is described. One is a novel mutation 647T,C which leads to substitution of isoleucine by threonine at position 215 (I215T). This maternal mutation was found in several family members. A previously known mutation, 757G,A, leads to the replacement of valine by methionine at position 252 (V252M). The latter mutation was found also in the father and one of the two brothers. The effects of these mutations were analysed on a model of the human b5R protein obtained by homology modelling. Although both amino acid substitutions are located in the NADH-binding domain, the whole protein structure, especially the region between the flavin adenine dinucleotide and NADH-binding domains, is disturbed. The structural changes in the I215T mutant are less prominent than those in the V252M mutant. We presume that the 647T,C mutation is a type I mutation, however, it has not been observed in the homozygous state. [source] The Use of N -Type Ligands in the Enantioselective Liquid,Liquid Extraction of Underivatized Amino AcidsEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 27 2010Bastiaan J. V. Verkuijl Abstract The first palladium based extraction system using chiral N -based ligands in the enantioselective liquid,liquid extraction (ELLE) of underivatized amino acids, is presented. The system shows the highest selectivity for the ELLE of methionine with metal complexes as hosts reported to date. Furthermore, the host can be prepared in situ from commercially available compounds. The dependency of the system on parameters such as pH, organic solvent, and temperature has been established. The intrinsic selectivity was deduced by determination of the association constants of the palladium complex with the tryptophan enantiomers. [source] Access to Any Site-Directed Isotopomer of Methionine, Selenomethionine, Cysteine, and Selenocysteine , Use of Simple, Efficient Modular Synthetic Reaction Schemes for Isotope IncorporationEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 13 2004Arjan H. G. Siebum Abstract Simple modular reaction schemes that allow access to any isotopomer of protected serine and homoserine have been worked out. These systems could be simply converted into cysteine, selenocysteine, homocysteine, homoselenocysteine, the essential amino acid methionine, and selenomethionine by Mitsunobu chemistry. These sulfur- and selenium-containing amino acids fulfil many essential roles in the living organism. In addition, homoserine could be converted in a few steps into optically active L -vinylglycine. As well as the stable isotopes 13C, 15N, 17O, and 18O, the radioactive isotopes of sulfur, selenium and carbon can also be easily introduced in a site-directed fashion. In view of the wide scope of the Mitsunobu reaction, we feel that many more important systems with the carbon skeleton of serine and homoserine should be preparable through this basic chemistry in any site-directed isotopically labeled form. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Flexibility and communication within the structure of the Mycobacterium smegmatis methionyl-tRNA synthetaseFEBS JOURNAL, Issue 19 2010Henrik Ingvarsson Two structures of monomeric methionyl-tRNA synthetase, from Mycobacterium smegmatis, in complex with the ligands methionine/adenosine and methionine, were analyzed by X-ray crystallography at 2.3 Å and at 2.8 Å, respectively. The structures demonstrated the flexibility of the multidomain enzyme. A new conformation of the structure was identified in which the connective peptide domain bound more closely to the catalytic domain than described previously. The KMSKS(301-305) loop in our structures was in an open and inactive conformation that differed from previous structures by a rotation of the loop of about 90° around hinges located at Asn297 and Val310. The binding of adenosine to the methionyl-tRNA synthetase methionine complex caused a shift in the KMSKS domain that brought it closer to the catalytic domain. The potential use of the adenosine-binding site for inhibitor binding was evaluated and a potential binding site for a specific allosteric inhibitor was identified. [source] Structure,activity relationships of wheat flavone O -methyltransferase , a homodimer of convenienceFEBS JOURNAL, Issue 9 2008Jack A. Kornblatt Wheat flavone O -methyltransferase catalyzes three sequential methylations of the flavone tricetin. Like other flavonoid O -methyltransferases, the protein is a homodimer. We demonstrate, using analytical ultracentrifugation, that perchlorate dissociates the dimer into monomers. The resulting monomers retain all their catalytic capacity, including the ability to catalyze the three successive methylations. We show, using isothermal titration calorimetry, that the binding constant for S -adenosyl- l -methionine does not change significantly as the protein dissociates. The second substrate, tricetin, binds to the dimers but could not be tested with the monomers. CD, UV and fluorescence spectroscopy show that there are substantial changes in the structure of the protein as it dissociates. The fact that there are differences between the monomers and dimers even as the monomers maintain activity may be the result of the very low catalytic capacity of this enzyme. Maximal turnover numbers for the dimers and monomers are only about 6,7 per minute. Even though the binding pockets for S -adenosyl- l -methionine, tricetin, selgin and tricin are intact, selection of a catalytically competent structure may be a very slow step during catalysis. [source] |