Mesoporous Silica Nanoparticles (mesoporou + silica_nanoparticle)

Distribution by Scientific Domains


Selected Abstracts


Glutathione-Induced Intracellular Release of Guests from Mesoporous Silica Nanocontainers with Cyclodextrin Gatekeepers

ADVANCED MATERIALS, Issue 38 2010
Hyehyeon Kim
Cyclodextrins tethered onto a mesoporous silica nanoparticle via disulfide stalking are effective gatekeepers not only to entrap guest molecules in the pore but also to release the guest in response to glutathione (GSH). The PEGylated nanocontainers also exhibit efficient GSH-mediated release of doxorubicin in cancer cells. Our approach offers unique applications for multifunctional delivery systems. [source]


Near-Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2009
Chia-Hung Lee
Abstract The characterization of near-infrared (NIR) mesoporous silica nanoparticles (MSN) suitable for in vivo optical imaging with high efficiency is presented. Trimethylammonium groups modified MSN (MSN-TA) with the average size of 50,100,nm was synthesized with incorporation of the TA groups into the framework of MSN. It was further adsorbed with indocyanine green (ICG) by electrostatic attraction to render MSN-TA-ICG as an efficient NIR contrast agent for in vivo optical imaging. The studies in stability of MSN-TA-ICG against pH indicated the bonding is stable over the range from acidic to physiological pH. The in vivo biodistribution of MSN-TA-ICG in anesthetized rat demonstrated a rather strong and stable fluorescence of MSN-TA-ICG that prominent in the organ of liver. Transmission electron microscopy (TEM) imaging and elemental analysis of silicon further manifested the physical and quantitative residences of MSN-TA-ICG in major organs. This is the first report of MSN functionalized with NIR-ICG capable of optical imaging in vivo. [source]


Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles

ADVANCED MATERIALS, Issue 17 2009
Monty Liong
Silver nanocrystals encapsulated in mesoporous silica nanoparticles are prepared by coating hydrophobic silver nanocrystals with amphiphilic surfactants and growing mesostructured silica around the materials. The nanoparticles can be used as antimicrobial agents for both Gram-positive and -negative bacteria through oxidative dissolution of the silver nanocrystals. The surface characteristics of the silica exterior affect the binding to the bacteria and the cytotoxicity. [source]


In vitro Studies of Functionalized Mesoporous Silica Nanoparticles for Photodynamic Therapy

ADVANCED MATERIALS, Issue 2 2009
Hsiung-Lin Tu
A versatile platform for photodynamic therapy (PDT), mesoporous silica nanoparticles functionalized with protoporphyrin IX (PpIX-MSNs), has been developed. In vitro studies on HeLa cells show high uptake efficiency. Phototoxicity results give both irradiation time- and dosage-dependent cell death events. Because of the ease of incorporating other biomedical functional groups, we believe MSNs would be an ideal platform for biomedical applications. [source]


Mesostructured Silica for Optical Functionality, Nanomachines, and Drug Delivery

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2009
Yaroslav Klichko
Silica thin films and nanoparticles prepared using sol,gel chemistry are derivatized with active molecules to generate new functional materials. The mild conditions associated with sol,gel processing allow for the incorporation of a range of dopants including organic or inorganic dyes, biomolecules, surfactants, and molecular machines. Silica nanoparticles embedded with inorganic nanocrystals, and films containing living cells have also been synthesized. Silica templated with surfactants to create mesostructure contains physically and chemically different regions that can be selectively derivatized using defined techniques to create dynamic materials. Using two different techniques, donor,acceptor pairs can be doped into separated regions simultaneously and photo-induced electron transfer between the molecules can be measured. Mesoporous silica materials are also useful supports for molecular machines. Machines including snap-tops and nanoimpellers that are designed to control the release of guest molecules trapped within the pores are described. Mesoporous silica nanoparticles are promising materials for drug delivery and other biomedical applications because they are nontoxic and can be taken up by living cells. Through appropriate design and synthesis, multifunctional mesoporous silica nanoparticles for sophisticated bio-applications are created. [source]