Home About us Contact | |||
Mesenchymal Condensation (mesenchymal + condensation)
Selected AbstractsAnalysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro,DEVELOPMENTAL DYNAMICS, Issue 2 2002Anthony M. Delise Abstract During embryonic limb development, cartilage formation is presaged by a crucial mesenchymal cell condensation phase. N-Cadherin, a Ca2+ -dependent cell,cell adhesion molecule, is expressed in embryonic chick limb buds in a spatiotemporal pattern suggestive of its involvement during cellular condensation; functional blocking of N-cadherin homotypic binding, by using a neutralizing monoclonal antibody, results in perturbed chondrogenesis in vitro and in vivo. In high-density micromass cultures of embryonic limb mesenchymal cells, N-cadherin expression level is high during days 1 and 2, coincident with active cellular condensation, and decreases upon overt chondrogenic differentiation from day 3 on. In this study, we have used a transfection approach to evaluate the effects of gain- and loss-of-function expression of N-cadherin constructs on mesenchymal condensation and chondrogenesis in vitro. Chick limb mesenchymal cells were transfected by electroporation with recombinant expression plasmids encoding wild-type or two mutant extracellular/cytoplasmic deletion forms of N-cadherin. Expression of the transfected N-cadherin forms showed a transient profile, being high on days 1,2 of culture, and decreasing by day 3, fortuitously coincident with the temporal profile of endogenous N-cadherin gene expression. Examined by means of peanut agglutinin (PNA) staining for condensing precartilage mesenchymal cells, cultures overexpressing wild-type N-cadherin showed enhanced cellular condensation on culture days 2 and 3, whereas expression of the deletion mutant forms (extracellular/cytoplasmic) of N-cadherin resulted in a decrease in PNA staining, suggesting that a complete N-cadherin protein is required for normal cellular condensation to occur. Subsequent chondrogenesis was also affected. Cultures overexpressing the wild-type N-cadherin protein showed enhanced chondrogenesis, indicated by increased production of cartilage matrix (sulfated proteoglycans, collagen type II, and cartilage proteoglycan link protein), as well as increased cartilage nodule number and size of individual nodules, compared with control cultures and cultures transfected with either of the two mutant N-cadherin constructs. These results demonstrate that complete N-cadherin function, at the levels of both extracellular homotypic binding and cytoplasmic linkage to the cytoskeleton by means of the catenin complex, is required for chondrogenesis by mediating functional mesenchymal cell condensation. © 2002 Wiley-Liss, Inc. [source] Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limbDEVELOPMENTAL DYNAMICS, Issue 3 2001Melinda Yin Abstract Vascular regression occurs during limb mesenchymal cell condensation and chondrogenesis, but it is unclear whether it is required for these processes or is a secondary phenomenon without major regulatory roles. To address this issue, beads presoaked with the potent angiogenic factor vascular endothelial growth factor (VEGF) were implanted in the vicinity of the prospective digit 2 in early chick embryo wing buds and the effects on angiogenesis and digit development were determined over time. We found that VEGF treatment caused a marked local increase in blood vessel number and density. Strikingly, this was accompanied by inhibition of digit 2 development as revealed by lack of expression of chondrogenic transcription factor Sox9 and absence of Alcian blue staining. Vascular distribution and skeletal development in adjacent areas remained largely unaffected. Inhibition of digit formation and excess vascularization were both reversible upon further embryonic growth and dissipation of VEGF activity. When supernumerary digits were induced at the anterior limb margin by retinoic acid treatment, their development was also preceded by vascular regression; interestingly, cotreatment with VEGF inhibited supernumerary digit development as well. Direct exposure of limb mesenchymal cells in micromass cultures to VEGF caused no obvious effects on condensation and chondrogenesis, indicating that VEGF effects are not due to direct action on skeletal cells. Our results are the first to provide evidence that vascular regression is required for mesenchymal condensation and chondrogenesis. A model of how patterning mechanisms and vascular regression may intersect and orchestrate limb skeletogenesis is proposed. © 2001 Wiley-Liss, Inc. [source] Modularity of the rodent mandible: Integrating bones, muscles, and teethEVOLUTION AND DEVELOPMENT, Issue 6 2008Miriam Leah Zelditch Summary Several models explain how a complex integrated system like the rodent mandible can arise from multiple developmental modules. The models propose various integrating mechanisms, including epigenetic effects of muscles on bones. We test five for their ability to predict correlations found in the individual (symmetric) and fluctuating asymmetric (FA) components of shape variation. We also use exploratory methods to discern patterns unanticipated by any model. Two models fit observed correlation matrices from both components: (1) parts originating in same mesenchymal condensation are integrated, (2) parts developmentally dependent on the same muscle form an integrated complex as do those dependent on teeth. Another fits the correlations observed in FA: each muscle insertion site is an integrated unit. However, no model fits well, and none predicts the complex structure found in the exploratory analyses, best described as a reticulated network. Furthermore, no model predicts the correlation between proximal parts of the condyloid and coronoid, which can exceed the correlations between proximal and distal parts of the same process. Additionally, no model predicts the correlation between molar alveolus and ramus and/or angular process, one of the highest correlations found in the FA component. That correlation contradicts the basic premise of all five developmental models, yet it should be anticipated from the epigenetic effects of mastication, possibly the primary morphogenetic process integrating the jaw coupling forces generated by muscle contraction with those experienced at teeth. [source] Hand development and sequence of ossification in the forelimb of the European shrew Crocidura russula (Soricidae) and comparisons across therian mammalsJOURNAL OF ANATOMY, Issue 2 2004Jan Prochel Abstract Hand development in the European shrew Crocidura russula is described, based on the examination of a cleared and double-stained ontogenetic series and histological sections of a c. 20-day-old embryo and a neonate. In the embryo all carpal elements are still mesenchymal condensations, and there are three more elements than in the adult stage: the ,lunatum', which fuses with the scaphoid around birth; a centrale, which either fuses with another carpal element or just disappears later in ontogeny; and the anlage of an element that later fuses with the radius. Carpal arrangement in the neonate and the adult is the same. In order to compare the relative timing of the onset of ossification in forelimb bones in C. russula with that of other therians, we built up two matrices of events based on two sets of data and used the event-pair method. In the first analysis, ossification of forelimb elements in general was examined, including that of the humerus, radius, ulna, the first carpal and metacarpal to ossify, and the phalanges of the third digit. The second analysis included each carpal, humerus, radius, ulna, the first metacarpal and the first phalanx to ossify. Some characters (= event,pairs) provide synapomorphies for some clades examined. There have been some shifts in the timing of ossification apparently not caused by ecological and/or environmental influences. In two species (Oryctolagus and Myotis), there is a tendency to start the ossification of the carpals relatively earlier than in all other species examined, the sauropsid outgroups included. [source] Versican expression during skeletal/joint morphogenesis and patterning of muscle and nerve in the embryonic mouse limbTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2005Holly E. Snow Abstract Versican, an extracellular matrix proteoglycan, has been implicated in limb development and is expressed in precartilage mesenchymal condensations. However, studies have lacked precise spatial and temporal investigation of versican localization during skeletogenesis and its relationship to patterning of muscle and nerve during mammalian limb development. The transgenic mouse line hdf (heart defect), which bears a lacZ reporter construct disrupting Cspg2 encoding versican, allowed ready detection of hdf transgene expression through histochemical analysis. Hdf transgene expression in whole mount heterozygous embryos and localization of versican relative to cartilage, muscle, and nerve tissues in paraffin-embedded limb sections of wild-type embryos from 10.5,14 days postcoitum were evaluated by lacZ histochemistry, immunohistochemistry, and in situ hybridization. Versican was localized within precartilage condensations and nascent cartilages with expression diminishing during maturation of the cartilage model at later time points. Interestingly, versican remained highly expressed in developing synovial joint interzones, suggesting potential function for versican in joint morphogenesis. Isolated myoblasts, incipient skeletal muscle masses, and neurites were not present in areas of strong versican expression within the developing limb. Versican-expressing tissues may reserve space for the future limb skeleton and developing joints and may aid in patterning of muscle and nerve by deterring muscle migration and innervation into these regions. © 2005 Wiley-Liss, Inc. [source] |