Home About us Contact | |||
Membrane Vesicles (membrane + vesicle)
Kinds of Membrane Vesicles Selected AbstractsThe Origin of Membrane Vesicles in Ram Seminal PlasmaREPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2006R El-Hajj Ghaoui Contents The hypothesis tested in this study was that the membrane vesicles present in ram seminal plasma are of testicular origin, rather than being secreted by the accessory sex glands as has been previously reported for a number of species. Membrane vesicles were present in cellular extracts from reproductive organs and accessory sex glands of six rams, and in the seminal plasma of a further eight rams. When four of the latter rams were subjected to vasectomy, to isolate ejaculate contents to only the secretions of the accessory sex glands, the vesicles were largely eliminated from their ejaculates, while vesicles were still present in the ejaculates of the four control rams. The constituents of the cytoplasmic droplets and membrane vesicles derived from the seminal plasma were compared by transmission electron microscopy (TEM). Vesicles present in the cytoplasmic droplets were similar in morphology but smaller on average than those in the seminal plasma. It was concluded that the membrane vesicles in ram seminal plasma originate from either the cytoplasmic droplets, or a combination of vesicles from the droplets and the epididymis. [source] Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangioblast stem cells,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010Maria Elena Candela Certain proteins, including fibroblast growth factor-2 (FGF-2) and matrix metalloproteinase-9 (MMP-9), have proved very effective in increasing the efficacy of mesoangioblast stem cell therapy in repairing damaged tissue. We provide the first evidence that mouse mesoangioblast stem cells release FGF-2 and MMP-9 in their active form through the production of membrane vesicles. These vesicles are produced and turned over continuously, but are stable for some time in the extracellular milieu. Mesoangioblasts shed membrane vesicles even under oxygen tensions that are lower than those typically used for cell culture and more like those of mouse tissues. These findings suggest that mesoangioblasts may themselves secrete paracrine signals and factors that make damaged tissues more amenable to cell therapy through the release of membrane vesicles. J. Cell. Physiol. 224:144,151, 2010 © 2010 Wiley-Liss, Inc. [source] Properties of plant plasma membrane lipid models , bilayer permeability and monolayer behaviour of glucosylceramide and phosphatidic acid in phospholipid mixturesPHYSIOLOGIA PLANTARUM, Issue 2 2000Anna H. Berglund Phosphatidic acid (PA) and glucosylceramide (Cer), constituents of plant plasma membranes, were used in interaction studies with the major plasma membrane lipid components, phosphatidylcholine (PC) and phosphatidylethanolamine (PE). With molecular species combinations, representative for plant plasma membranes, packing conditions during compression of monolayers of PC/PE mixtures with different amounts of PA or Cer added, were investigated. In contrast to the behaviour of single PA or single Cer, which exhibited condensed compression curves, as compared with curves representative for phosphoglycerides, the triple mixtures of PC/PE with PA or Cer showed markedly expanded monolayer films. These data were evaluated as a spontaneous heterogeneous dispersion of PA and Cer in the PC/PE mixture. Membrane vesicles produced with different amounts of PA added to a PC/PE mixture of 1:1 (mol/mol) had an almost linear increase in permeability for glucose (chosen as a common polar low-molecular mass metabolite) with increasing percentage PA. The presence of PA in plasma membranes and its possible function are discussed in relation to recent reports on anionic protein-lipid interactions. PC/PE vesicles with different amounts of Cer added did not influence the permeability for glucose at 2.5 and 5 mol%, but did so, significantly, at 7.5 and 9 mol%. [source] The Origin of Membrane Vesicles in Ram Seminal PlasmaREPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2006R El-Hajj Ghaoui Contents The hypothesis tested in this study was that the membrane vesicles present in ram seminal plasma are of testicular origin, rather than being secreted by the accessory sex glands as has been previously reported for a number of species. Membrane vesicles were present in cellular extracts from reproductive organs and accessory sex glands of six rams, and in the seminal plasma of a further eight rams. When four of the latter rams were subjected to vasectomy, to isolate ejaculate contents to only the secretions of the accessory sex glands, the vesicles were largely eliminated from their ejaculates, while vesicles were still present in the ejaculates of the four control rams. The constituents of the cytoplasmic droplets and membrane vesicles derived from the seminal plasma were compared by transmission electron microscopy (TEM). Vesicles present in the cytoplasmic droplets were similar in morphology but smaller on average than those in the seminal plasma. It was concluded that the membrane vesicles in ram seminal plasma originate from either the cytoplasmic droplets, or a combination of vesicles from the droplets and the epididymis. [source] Akt2/PKB,-sensitive regulation of renal phosphate transportACTA PHYSIOLOGICA, Issue 1 2010D. S. Kempe Abstract Aim:, The protein kinase B (PKB)/Akt is known to stimulate the cellular uptake of glucose and amino acids. The kinase is expressed in proximal renal tubules. The present study explored the influence of Akt/PKB on renal tubular phosphate transport. Methods:, The renal phosphate transporter NaPi-IIa was expressed in Xenopus oocytes with or without PKB/Akt and Na+ phosphate cotransport determined using dual electrode voltage clamp. Renal phosphate excretion was determined in Akt2/PKB, knockout mice (akt2,/,) and corresponding wild-type mice (akt2+/+). Transporter protein abundance was determined using Western blotting and phosphate transport by 32P uptake into brush border membrane vesicles. Results:, The phosphate-induced current in NaPi-IIa-expressing Xenopus oocytes was significantly increased by the coexpression of Akt/PKB. Phosphate excretion [,mol per 24 h per g BW] was higher by 91% in akt2,/, than in akt2+/+ mice. The phosphaturia of akt2,/, mice occurred despite normal transport activity and expression of the renal phosphate transporters NaPi-IIa, NaPi-IIc and Pit2 in the brush border membrane, a significantly decreased plasma PTH concentration (by 46%) and a significantly enhanced plasma 1,25-dihydroxyvitamin D3 concentration (by 46%). Moreover, fractional renal Ca2+ excretion was significantly enhanced (by 53%) and bone density significantly reduced (by 11%) in akt2,/, mice. Conclusions:, Akt2/PKB, plays a role in the acute regulation of renal phosphate transport and thus contributes to the maintenance of phosphate balance and adequate mineralization of bone. [source] Interaction between Anticonvulsants and Human Placental Carnitine TransporterEPILEPSIA, Issue 3 2004Shu-Pei Wu Summary: Purpose: To examine the inhibitory effect of anticonvulsants (AEDs) on carnitine transport by the human placental carnitine transporter. Methods: Uptake of radiolabeled carnitine by human placental brush-border membrane vesicles was measured in the absence and presence of tiagabine (TGB), vigabatrin (VGB), gabapentin (GBP), lamotrigine (LTG), topiramate (TPM), valproic acid (VPA), and phenytoin (PHT). The mechanism of the inhibitory action of TGB was determined. Results: Most of the AEDs inhibited placental carnitine transport. Kinetic analyses showed that TGB had the greatest inhibitory effect [50% inhibitory concentration (IC50, 190 ,M)], and the order of inhibitory potency was TGB > PHT > GBP > VPA > VGB, TPM > LTG. Further studies showed that TGB competitively inhibited carnitine uptake by the human placental carnitine transporter, suggesting that it may be a substrate for this carrier. Conclusions: Although the involvement of carnitine deficiency in fetal anticonvulsant syndrome requires further evaluation, potential interference with placental carnitine transport by several AEDs was demonstrated. Despite the higher inhibitory potency of TGB, given the therapeutic unbound concentrations, the results for VPA and PHT are probably more clinically significant. [source] Cellular microparticles: new players in the field of vascular disease?EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 6 2004M. Diamant Abstract Microparticles are small membrane vesicles that are released from cells upon activation or during apoptosis. Cellular microparticles in body fluids constitute a heterogeneous population, differing in cellular origin, numbers, size, antigenic composition and functional properties. Microparticles support coagulation by exposure of negatively charged phospholipids and sometimes tissue factor, the initiator of coagulation in vivo. Microparticles may transfer bioactive molecules to other cells or microparticles, thereby stimulating cells to produce cytokines, cell-adhesion molecules, growth factors and tissue factor, and modulate endothelial functions. Microparticles derived from various cells, most notably platelets but also leucocytes, lymphocytes, erythrocytes and endothelial cells, are present in the circulation of healthy subjects. Rare hereditary syndromes with disturbances in membrane vesiculation leading to a decreased numbers of microparticles clinically present with a bleeding tendency. In contrast, elevated numbers of microparticles are encountered in patients with a great variety of diseases with vascular involvement and hypercoagulability, including disseminated intravascular coagulation, acute coronary syndromes, peripheral arterial disease, diabetes mellitus and systemic inflammatory disease. Finally, microparticles are a major component of human atherosclerotic plaques. In view of their functional properties, cell-derived microparticles may be an important intermediate in the cascade of cellular and plasmatic dysfunctions underlying the process of atherogenesis. [source] Intranasal immunisation with inactivated RSV and bacterial adjuvants induces mucosal protection and abrogates eosinophilia upon challengeEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2006Nathalie Etchart Abstract We have previously shown that following intranasal exposure to influenza virus, specific plasma cells are generated in the nasal-associated lymphoid tissue (NALT) and maintained for the life of the animal. However, we also showed that following infection with respiratory syncytial virus (RSV), specific plasma cells are generated in the NALT but wane quickly and are not maintained even after challenge, even though RSV-specific serum antibody responses remain robust. Only infection with influenza virus generated sterilising immunity, implying a role for these long-lived plasma cells in protection. We show here that the RSV-specific IgA NALT plasma cell population and lung antibody levels can be substantially boosted, both at acute and memory time points, by intranasal immunisation with inactivated RSV (iRSV) in combination with bacterial outer membrane vesicles (OMV) compared to live RSV alone. Finally, challenge with live RSV showed that immunisation with iRSV and OMV protect against both virus replication in the lung and the eosinophil infiltrate generated by either live RSV or iRSV alone. These data show that immunisation with iRSV and OMV maintains a NALT RSV-specific plasma cell population and generates an efficient protective immune response following RSV infection. See accompanying commentary: http://dx.doi.org/10.1002/eji.200636118 [source] Plasma membrane Ca2+ -ATPase in the cilia of olfactory receptor neurons: possible role in Ca2+ clearanceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2007Karen Castillo Abstract Olfactory sensory neurons respond to odorants increasing Ca2+ concentrations in their chemosensory cilia. Calcium enters the cilia through cAMP-gated channels, activating Ca2+ -dependent chloride or potassium channels. Calcium also has a fundamental role in odour adaptation, regulating cAMP turnover rate and the affinity of the cyclic nucleotide-gated channels for cAMP. It has been shown that a Na+/Ca2+ exchanger (NCX) extrudes Ca2+ from the cilia. Here we confirm previous evidence that olfactory cilia also express plasma membrane Ca2+ -ATPase (PMCA), and show the first evidence supporting a role in Ca2+ removal. Both transporters were detected by immunoblot of purified olfactory cilia membranes. The pump was also revealed by immunocytochemistry and immunohistochemistry. Inside-out cilia membrane vesicles transported Ca2+ in an ATP-dependent fashion. PMCA activity was potentiated by luminal Ca2+ (K0.5 = 670 nm) and enhanced by calmodulin (CaM; K0.5 = 31 nm). Both carboxyeosin (CE) and calmidazolium reduced Ca2+ transport, as expected for a CaM-modulated PMCA. The relaxation time constant (,) of the Ca2+ -dependent Cl, current (272 ± 78 ms), indicative of luminal Ca2+ decline, was increased by CE (2181 ± 437 ms), by omitting ATP (666 ± 49 ms) and by raising pH (725 ± 65 ms), suggesting a role of the pump on Ca2+ clearance. Replacement of external Na+ by Li+ had a similar effect (, = 442 ± 8 ms), confirming the NCX involvement in Ca2+ extrusion. The evidence suggests that both Ca2+ transporters contribute to re-establish resting Ca2+ levels in the cilia following olfactory responses. [source] Protein Kinase C Regulation of Rat Jejunal Transport Systems: Mechanisms Involved in Lactate MovementEXPERIMENTAL PHYSIOLOGY, Issue 6 2002Marisa Tosco We examined whether protein kinase C (PKC) modulates the transport systems involved in lactate movements across the plasma membranes of rat jejunum. In vitro phosphorylated membrane vesicles were used to perform uptake studies, the results of which suggested that PKC activation exerts an inhibitory effect on basolateral H+ -lactate symport, as well as on apical Na+ -glucose cotransport. The specificity of the response to PKC was confirmed by using staurosporine, chelerythrine or 4-,-PMA. Experiments performed using the whole tissue incubated in vitro confirmed the reduction of lactate transport elicited by PKC and gave evidence for an associated inhibition of fluid transport. Na+,K+ -ATPase activity seems to be unaffected by the kinase and inhibited by Ca2+. Taken together, our results suggest that the overall action of PKC results from the simultananeous modulation of multiple pathways, targeted to a reduction of both lactate and bicarbonate transports without altering cell pH homeostasis. [source] Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcaniiFEBS JOURNAL, Issue 7 2004Tovit Lichi Across evolution, the signal recognition particle pathway targets extra-cytoplasmic proteins to membranous translocation sites. Whereas the pathway has been extensively studied in Eukarya and Bacteria, little is known of this system in Archaea. In the following, membrane association of FtsY, the prokaryal signal recognition particle receptor, and SRP54, a central component of the signal recognition particle, was addressed in the halophilic archaea Haloferax volcanii. Purified H. volcanii FtsY, the FtsY C-terminal GTP-binding domain (NG domain) or SRP54, were combined separately or in different combinations with H. volcanii inverted membrane vesicles and examined by gradient floatation to differentiate between soluble and membrane-bound protein. Such studies revealed that both FtsY and the FtsY NG domain bound to H. volcanii vesicles in a manner unaffected by proteolytic pretreatment of the membranes, implying that in Archaea, FtsY association is mediated through the membrane lipids. Indeed, membrane association of FtsY was also detected in intact H. volcanii cells. The contribution of the NG domain to FtsY binding in halophilic archaea may be considerable, given the low number of basic charges found at the start of the N-terminal acidic domain of haloarchaeal FtsY proteins (the region of the protein thought to mediate FtsY,membrane association in Bacteria). Moreover, FtsY, but not the NG domain, was shown to mediate membrane association of H. volcanii SRP54, a protein that did not otherwise interact with the membrane. [source] Glucose sensing in the intestinal epitheliumFEBS JOURNAL, Issue 16 2003Jane Dyer Dietary sugars regulate expression of the intestinal Na+/glucose cotransporter, SGLT1, in many species. Using sheep intestine as a model, we showed that lumenal monosaccharides, both metabolisable and nonmetabolisable, regulate SGLT1 expression. This regulation occurs not only at the level of transcription, but also at the post-transcriptional level. Introduction of d -glucose and some d -glucose analogues into ruminant sheep intestine resulted in >,50-fold enhancement of SGLT1 expression. We aimed to determine if transport of sugar into the enterocytes is required for SGLT1 induction, and delineate the signal-transduction pathways involved. A membrane impermeable d -glucose analogue, di(glucos-6-yl)poly(ethylene glycol) 600, was synthesized and infused into the intestines of ruminant sheep. SGLT1 expression was determined using transport studies, Northern and Western blotting, and immunohistochemistry. An intestinal cell line, STC-1, was used to investigate the signalling pathways. Intestinal infusion with di(glucos-6-yl)poly(ethylene glycol) 600 led to induction of functional SGLT1, but the compound did not inhibit Na+/glucose transport into intestinal brush-border membrane vesicles. Studies using cells showed that increased medium glucose up-regulated SGLT1 abundance and SGLT1 promoter activity, and increased intracellular cAMP levels. Glucose-induced activation of the SGLT1 promoter was mimicked by the protein kinase A (PKA) agonist, 8Br-cAMP, and was inhibited by H-89, a PKA inhibitor. Pertussis toxin, a G-protein (Gi)-specific inhibitor, enhanced SGLT1 protein abundance to levels observed in response to glucose or 8Br-cAMP. We conclude that lumenal glucose is sensed by a glucose sensor, distinct from SGLT1, residing on the external face of the lumenal membrane. The glucose sensor initiates a signalling pathway, involving a G-protein-coupled receptor linked to a cAMP,PKA pathway resulting in enhancement of SGLT1 expression. [source] Effects of clotrimazole on transport mediated by multidrug resistance associated protein 1 (MRP1) in human erythrocytes and tumour cellsFEBS JOURNAL, Issue 24 2001Antonios Klokouzas Clotrimazole has been shown to have potent anti-malarial activity in vitro, one possible mechanism being inhibition of oxidized glutathione (GSSG) export from the infected human red blood cells or from the parasite itself. Efflux of GSSG from normal erythrocytes is mediated by a high affinity glutathione S-conjugate transporter. This paper shows that transport of the model substrate, 3 µm dinitrophenyl S -glutathione, across erythrocyte membranes is inhibited by multidrug resistance-associated protein 1 (MRP1)-specific antibody, QCRL-3, strongly suggesting that the high affinity transport is mediated by MRP1. The rates of transport observed with membrane vesicles prepared from erythrocytes or from multidrug resistant tumour cells show a similar pattern of responses to applied reduced glutathione, GSSG and MRP1 inhibitors (indomethacin, MK571) further supporting the conclusion that the high affinity transporter is MRP1. In both erythrocytes and MRP1-expressing tumour cells, MRP1-associated transport is inhibited by clotrimazole over the range 2,20 µm, and the inhibitory effect leads to increases in accumulation of MRP1 substrates, vincristine and calcein, and decreases in calcein efflux from intact MRP1-expressing human tumour cells. It also results in increased sensitivity to daunorubicin of the multidrug resistant cells, L23/R but not the sensitive parent L23/P cells. These results demonstrate that clotrimazole can inhibit the MRP1 which is present in human erythrocytes, an effect that may contribute to, though not fully account for, its anti-malarial action. [source] Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicansFEBS JOURNAL, Issue 16 2001Dae-Hee Kim Tenecin 3 is a glycine-rich, antifungal protein of 78 residues isolated from the insect Tenebrio molitor larva. As an initial step towards understanding the antifungal mechanism of tenecin 3, we examined how this protein interacts with the pathogenic fungus Candida albicans to exert its antifungal action. Tenecin 3 did not induce the release of a fluorescent dye trapped in the artificial membrane vesicles and it did not perturb the membrane potential of C. albicans by the initial interaction. Fluorescence confocal microscopy and flow cytometric analysis revealed that tenecin 3 is rapidly internalized into the cytoplasmic space in energy-dependent and temperature-dependent manners. This internalization is also dependent on the ionic environment and cellular metabolic states. These results suggest that the internalization of tenecin 3 into the cytoplasm of C. albicans is mediated by a fungal cellular process. The internalized tenecin 3 is dispersed in the cytoplasm, and the loss of cell viability occurs after this internalization. [source] Development and characterization of an animal model of carnitine deficiencyFEBS JOURNAL, Issue 6 2001Markus Spaniol Mammals cover their carnitine needs by diet and biosynthesis. The last step of carnitine biosynthesis is the conversion of butyrobetaine to carnitine by butyrobetaine hydroxylase. We investigated the effect of N -trimethyl-hydrazine-3-propionate (THP), a butyrobetaine analogue, on butyrobetaine hydroxylase kinetics, and carnitine biosynthesis and body homeostasis in rats fed a casein-based or a vegetarian diet. The Km of butyrobetaine hydroxylase purified from rat liver was 41 ± 9 µmol·L,1 for butyrobetaine and 37 ± 5 µmol·L,1 for THP, and THP was a competitive inhibitor of butyrobetaine hydroxylase (Ki 16 ± 2 µmol·L,1). In rats fed a vegetarian diet, renal excretion of total carnitine was increased by THP (20 mg·100 g,1·day,1 for three weeks), averaging 96 ± 36 and 5.3 ± 1.2 µmol·day,1 in THP-treated and control rats, respectively. After three weeks of treatment, the total carnitine plasma concentration (8.8 ± 2.1 versus 52.8 ± 11.4 µmol·L,1) and tissue levels were decreased in THP-treated rats (liver 0.19 ± 0.03 versus 0.59 ± 0.08 and muscle 0.24 ± 0.04 versus 1.07 ± 0.13 µmol·g,1). Carnitine biosynthesis was blocked in THP-treated rats (,0.22 ± 0.13 versus 0.57 ± 0.21 µmol·100 g,1·day,1). Similar results were obtained in rats treated with the casein-based diet. THP inhibited carnitine transport by rat renal brush-border membrane vesicles competitively (Ki 41 ± 3 µmol·L,1). Palmitate metabolism in vivo was impaired in THP-treated rats and the livers showed mixed steatosis. Steady-state mRNA levels of the carnitine transporter rat OCTN2 were increased in THP-treated rats in skeletal muscle and small intestine. In conclusion, THP inhibits butyrobetaine hydroxylase competitively, blocks carnitine biosynthesis in vivo and interacts competitively with renal carnitine reabsorption. THP-treated rats develop systemic carnitine deficiency over three weeks and can therefore serve as an animal model for human carnitine deficiency. [source] Identification of phospholipids as new components that assist in the in vitro trimerization of a bacterial pore proteinFEBS JOURNAL, Issue 3 2001Hans De Cock The in vitro trimerization of folded monomers of the bacterial pore protein PhoE, into its native-like, heat- and SDS-stable form requires incubations with isolated cell envelopes and Triton X-100. The possibility that membranes could be isolated that are enriched in assembly factors required for assembly of the pore protein was now investigated. Fractionation of total cell envelopes of Escherichia coli via various techniques indeed revealed the existence of membrane fractions with different capacities to support assembly in vitro. Fractions containing mainly inner membrane vesicles supported the formation of trimers that were associated with these membrane vesicles. However, only a proportion of these trimers were heat- and SDS-stable and these were formed with slow kinetics. In contrast, fractions containing mainly outer membrane vesicles supported formation of high amounts of heat-stable trimers with fast kinetics. We identified phospholipids as active assembly components in these membranes that support trimerization of folded monomers in a process with similar characteristics as observed with inner membrane vesicles. Furthermore, phospholipids strongly stimulate the kinetics of trimerization and increase the final yield of heat-stable trimers in the context of outer membranes. We propose that lipopolysaccharides stabilize the assembly competent state of folded monomers as a lipochaperone. Phospholipids are involved in converting the folded monomer into new assembly competent intermediate with a short half-life that will form heat-stable trimers most efficiently in the context of outer membrane vesicles. These results provide biochemical evidence for the involvement of different lipidic components at distinct stages of the porin assembly process. [source] Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene,HUMAN MUTATION, Issue 9 2009Paola Bianchi Abstract Congenital dyserythropoietic anemia type II (CDAII) is an autosomal recessive disease characterized by ineffective erythropoiesis, hemolysis, erythroblast morphological abnormalities, and hypoglycosylation of some red blood cell (RBC) membrane proteins. Recent studies indicated that CDAII is caused by a defect disturbing Golgi processing in erythroblasts. A linkage analysis located a candidate region on chromosome 20, termed the CDAN2 locus, in the majority of CDAII patients but the aberrant gene has not so far been elucidated. We used a proteomic-genomic approach to identify SEC23B as the candidate gene for CDAII by matching the recently published data on the cytoplasmic proteome of human RBCs with the chromosomic localization of CDAN2 locus. Sequencing analysis of SEC23B gene in 13 CDAII patients from 10 families revealed 12 different mutations: six missense (c.40C>T, c.325G>A, c.1043A>C, c.1489C>T, c.1808C>T, and c.2101C>T), two frameshift (c.428_428delAinsCG and c.1821delT), one splicing (c.689+1G>A), and three nonsense (c.568C>T, c.649C>T, and c.1660C>T). Mutations c.40C>T and c.325G>A were detected in unrelated patients. SEC23B is a member of the Sec23/Sec24 family, a component of the COPII coat protein complex involved in protein transport through membrane vesicles. Abnormalities in this gene are likely to disturb endoplasmic reticulum (ER)-to-Golgi trafficking, affecting different glycosylation pathways and ultimately accounting for the cellular phenotype observed in CDAII. Hum Mutat 30:1,7, 2009. © 2009 Wiley-Liss, Inc. [source] Effects of different brush border membrane vesicle isolation protocols on proteomic analysis of Cry1Ac binding proteins from the midgut of Helicoverpa armigeraINSECT SCIENCE, Issue 6 2008Li-Zhen Chen Abstract Brush border membrane vesicles (BBMV) isolated from insect midguts have been widely used to study Cry1A binding proteins. Sample preparation is important in two-dimensional electrophoresis (2-DE), so to determine a suitable BBMV preparation method in Helicoverpa armigera for 2-DE, we compared three published BBMV preparation methods mostly used in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). All methods yielded similar types and numbers of binding proteins, but in different quantities. The Abdul-Rauf and Ellar protocol was the best of the three, but had limitations. Sufficient protein quantity is important for research involving limited numbers of insects, such as studies of insect resistance to Bacillus thuringiensis in the field. Consequently, we integrated the three BBMV isolation methods into a single protocol that yielded high quantities of BBMV proteins from H. armigera larval midguts, which proved suitable for 2-DE analysis. [source] The Complementary Membranes Forming the Blood-Brain BarrierIUBMB LIFE, Issue 3 2002Richard A. Hawkins Abstract Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a ,-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the ,-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B o,+ ) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions. [source] In vitro studies on the effects of Saccharomyces boulardii and Bacillus cereus var. toyoi on nutrient transport in pig jejunumJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 1-2 2000G. Breves The probiotics Saccharomyces boulardii and Bacillus cereus var. toyoi are nonpathogenic microbes which have been shown to affect certain functions of the mucosal barrier in pig jejunum such as electrogenic ion transport capacity and paracellular permeability. The present studies were performed to investigate potential effects of the probiotics on jejunal nutrient transport such as sodium-dependent glucose transport or proton-dependent dipeptide transport. For this purpose the in vitro Ussing-chamber technique was applied in order to examine net electrogenic ion flux rates (short circuit currents, Isc) across isolated intact jejunal epithelia in the absence and presence of either 10 mmol/l glucose (mucosal side) or two-fold application of 5 mmol/l glycyl- l -sarcosine or glycyl- l -glutamine to the mucosal bathing solution. Brush border membrane vesicles (BBMV) were prepared in order to characterize kinetic parameters (Vmax, Km) of Na-dependent glucose transport. Intestinal tissues were obtained from growing pigs in a weight range between 23 and 33 kg. All animals were fed twice daily and received 0.8,0.9 kg/day of a standard diet. After a 9- to 10-day adaptation period the diets for treated animals were either supplemented for 8 days with 1.7×107 colony-forming units (CFU)/g feed of S. boulardii or for 3 weeks with 106 CFU/g feed B. cereus var. toyoi. Under basal conditions Isc values were not affected by different treatment protocols (controls: 0.74 ± 0.04 µeq/cm2 per h, n=9; S. boulardii: 0.74 ± 0.12 µeq/cm2 per h, n=7; B. cereus 0.68 ± 0.09 µeq/cm2 per h, n=5). Irrespective of dietary treatment, the addition of glucose resulted in significant increases of Isc indicating substantial onset of electrogenic net Na/glucose cotransport. Maximal Isc values occurred within 30 min and reached 2.79 ± 0.41 µeq/cm2 per h in control epithelia. This was significantly lower than found in S. boulardii (4.47 ± 0.43 µeq/cm2 per h, p < 0.05) and B. cereus var. toyoi tissues (4.45 ± 0.31 µeq/cm2 per h, p < 0.05). Gt values were 22.4 ± 1.3 mS/cm2 in control animals and were significantly lower as shown in S. boulardii (p < 0.01) and B. cereus var. toyoi (p < 0.01)-treated animals (28.4 ± 1.3 and 29.9 ± 0.8 mS/cm2, respectively). Vmax values of Na-dependent glucose uptake into BBMV differed significantly between controls (0.64 ± 0.08 nmol/mg protein per 10 s; n=5), S. boulardii (0.89 ± 0.06 nmol/mg protein per 10 s; n=5, p < 0.05) and B. cereus var. toyoi preparations (1.08 ± 0.05 nmol/mg protein per 10 s; n=3, p < 0.01). Km values were not significantly affected (control: 0.31 ± 0.04 mmol/l, S. boulardii: 0.29 ± 0.05 mmol/l, B. cereus var. toyoi: 0.21 ± 0.01 mmol/l). Irrespective of dietary treatment, application of the dipeptide model substances glycyl- l -sarcosine or glycyl- l -glutamine resulted in significant increases of Isc indicating marked stimulation of electrogenic net H+/dipeptide cotransport. Highest Isc responses occurred in B. cereus var. toyoi preparations and lowest were found in control tissues. However, these differences were not significant. Gt values were not affected by different dietary treatments. The results clearly demonstrate that oral administration of either S. boulardii or B. cereus var. toyoi stimulates Na-dependent glucose absorption in pig jejunum. [source] A Vacuolar ATPase Inhibitor, FR167356, Prevents Bone Resorption in Ovariectomized Rats With High Potency and Specificity: Potential for Clinical Application,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2005Kazuaki Niikura MS Abstract FR167356, a novel inhibitor of vacuolar ATPase, has high potency against osteoclast V-ATPase and low potency against lysosomal V-ATPase. FR167356 is the first compound of this nature to be tested. It has the potential to be useful for clinical application. Introduction: It has been suggested that the key issue regarding the therapeutic usefulness of V-ATPase inhibitors is their selectivity. Materials and Methods: In in vitro and in vivo studies, we compared FR167356 with other vacuolar ATPase (V-ATPase) inhibitors, bafilomycin A1 and SB242784. H+ transport by various membrane vesicles was assayed by measuring uptake of acridine orange. Inhibitory activity against in vitro bone resorption was examined by measuring the Ca2+ release from cultured calvariae. In vivo, hypercalcemia was induced by retinoic acid in thyroparathyroidectomized-ovariectomized rats, and the effect on serum Ca2+ level was assessed. Ovariectomized rats were treated with FR167356 or SB242784. One week after surgery, free deoxypyridinoline levels in 24-h urine samples, which were collected from 6 h after administration of FR167356, were measured by ELISA. After 4 weeks of treatment, plasma biochemical parameters were analyzed. BMD of the distal femur metaphysis was measured with pQCT. Histomorphometric analysis of the proximal tibias was performed. Blood gases of rats treated with FR167356 were measured with a blood gas analyzer for estimating the effect of FR167356 on in vivo function of renal V-ATPase. Results: FR167356, which is distinctly different from other V-ATPase inhibitors, has a high potency against osteoclast V-ATPase and low potency against lysosomal V-ATPase. Similarly, FR167356 inhibited bone resorption in vitro when stimulated by PTH, IL-1, and IL-6. FR167356 reduced retinoic acid-induced hypercalcemia in thyroparathyroidectomized-ovariectomized rats in a dose-dependent manner. Moreover, FR167356 was shown to restore BMD of ovariectomized rats caused by the inhibition of bone resorption. Ovariectomized rats treated with FR167356 did not show adverse symptoms, whereas SB242784 caused a decrease in body weight gain and significant changes in two plasma biochemical parameters. Interestingly, FR167356 treatment did not affect blood acid-base balance; however, FR167356 inhibited renal V-ATPase with a similar potency as for osteoclast V-ATPase inhibition. Conclusion: Comparison of FR167356 with SB242784 implies that the characteristics of FR167356 may be more appropriate for clinical application as a V-ATPase inhibitor. [source] Effects of Cyclosporine on Osteoclast Activity: Inhibition of Calcineurin Activity With Minimal Effects on Bone Resorption and Acid Transport Activity,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2003John P Williams Abstract Cyclosporine results in rapid and profound bone loss in transplant patients, an effect ascribed to osteoclasts. Cyclosporine, complexed with the appropriate immunophilin, inhibits calcineurin (the calcium/calmodulin dependent serine/threonine phosphatase) activity. We tested the hypothesis that cyclosporine inhibits calcineurin activity in osteoclasts, resulting in stimulation of osteoclast activity. We compared the effects of cyclosporine A and the calmodulin antagonist, tamoxifen, on bone resorption by avian osteoclasts. Tamoxifen inhibits bone resorption ,60%, whereas cyclosporine A only inhibited bone resorption 12%. One-hour treatment with 100 nM cyclosporine inhibited osteoclast calcineurin activity 70% in whole cell lysates, whereas 10 ,M tamoxifen only inhibited calcineurin activity 25%. We compared the effects of cyclosporine A and tamoxifen on acid transport activity in isolated membrane vesicles and in isolated membrane vesicles obtained from osteoclasts treated with cyclosporine A or tamoxifen under conditions that inhibit calcineurin activity. Direct addition of cyclosporine A in the acid transport assay, or pretreatment of cells with cyclosporine A followed by membrane isolation, had no effect on acid transport activity in membrane vesicles. In contrast, direct addition of tamoxifen to membranes inhibits acid transport activity, an effect that can be prevented by addition of exogenous calmodulin. Furthermore, acid transport activity was also inhibited in membrane vesicles isolated from cells treated with tamoxifen. In conclusion, cyclosporine A inhibits osteoclast calcineurin activity; however, calcineurin inhibition does not correspond to a significant effect on acid transport activity in isolated membrane vesicles or bone resorption by osteoclasts. [source] Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cellsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2004Cristina Vidulescu Abstract We detected cell-to-cell communication via intercellular bridges in DU 145 human prostate cancer cells by fluorescence microscopy. Since DU 145 cells have deficient gap junctions, intercellular bridges may have a prominent role in the transfer of chemical signals between these cells. In culture, DU 145 cells are contiguous over several cell diameters through filopodial extensions, and directly communicate with adjacent cells across intercellular bridges. These structures range from 100 nm to 5 ,m in diameter, and from a few microns to at least 50,100 ,m in length. Time-lapse imagery revealed that (1) filopodia rapidly move at a rate of microns per minute to contact neighboring cells and (2) intercellular bridges are conduits for transport of membrane vesicles (1,3 ,m in diameter) between adjacent cells. Immunofluorescence detected alpha-tubulin in intercellular bridges and filopodia, indicative of microtubule bundles, greater than a micron in diameter. The functional meaning, interrelationship of these membrane extensions are discussed, along with the significance of these findings for other culture systems such as stem cells. Potential applications of this work include the development of anticancer therapies that target intercellular communication and controlling formation of cancer spheroids for drug testing. [source] Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangioblast stem cells,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010Maria Elena Candela Certain proteins, including fibroblast growth factor-2 (FGF-2) and matrix metalloproteinase-9 (MMP-9), have proved very effective in increasing the efficacy of mesoangioblast stem cell therapy in repairing damaged tissue. We provide the first evidence that mouse mesoangioblast stem cells release FGF-2 and MMP-9 in their active form through the production of membrane vesicles. These vesicles are produced and turned over continuously, but are stable for some time in the extracellular milieu. Mesoangioblasts shed membrane vesicles even under oxygen tensions that are lower than those typically used for cell culture and more like those of mouse tissues. These findings suggest that mesoangioblasts may themselves secrete paracrine signals and factors that make damaged tissues more amenable to cell therapy through the release of membrane vesicles. J. Cell. Physiol. 224:144,151, 2010 © 2010 Wiley-Liss, Inc. [source] OCTN3: A Na+ -independent L -carnitine transporter in enterocytes basolateral membraneJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005J.M. Durán L -carnitine transport has been measured in enterocytes and basolateral membrane vesicles (BLMV) isolated from chicken intestinal epithelia. In the nominally Na+ -free conditions chicken enterocytes take up L -carnitine until the cell to medium L -carnitine ratio is 1. This uptake was inhibited by L -carnitine, D -carnitine, ,-butyrobetaine, acetylcarnitine, tetraethylammonium (TEA), and betaine. L - 3H-carnitine uptake into BLMV showed no overshoot, and it was (i) Na+ -independent, (ii) trans-stimulated by intravesicular L -carnitine, and (iii) cis-inhibited by TEA and cold L -carnitine. L - 3H-carnitine efflux from L - 3H-carnitine preloaded enterocytes was also Na+ -independent, and trans-stimulated by L -carnitine, D -carnitine, ,-butyrobetaine, acetylcarnitine, TEA, and betaine. Both, uptake and efflux of L -carnitine were inhibited by verapamil and unaffected by either extracellular pH or palmitoyl- L -carnitine. RT-PCR with specific primers for the mouse OCTN3 transporter revealed the existence of OCTN3 mRNA in mouse intestine, which was confirmed by in situ hybridization studies. Immunohystochemical analysis showed that OCTN3 protein was mainly associated with the basolateral membrane of rat and chicken enterocytes, whereas OCTN2 was detected at the apical membrane. In conclusion, the results demonstrate for the first time that (i) mammalian small intestine expresses OCTN3 mRNA along the villus and (ii) that OCTN3 protein is located in the basolateral membrane. They also suggest that OCTN3 could mediate the passive, Na+ and pH-independent L -carnitine transport activity measured in the three experimental conditions. © 2004 Wiley-Liss, Inc. [source] Relative contribution of V-H+ATPase and NA+/H+ exchanger to bicarbonate reabsorption in proximal convoluted tubules of old ratsAGING CELL, Issue 5 2006Mariana Fiori Summary With aging, the kidney develops a progressive deterioration of several structures and functions. Proximal tubular acidification is impaired in old rats with a decrease in the activity of brush border Na+/H+ exchange and a fall of H-ion flux measured with micropuncture experiments. In the present work we evaluate the contribution of 5-N-ethyl-n-isopropyl amiloride- (EIPA) and bafilomycin-sensitive bicarbonate flux () in proximal convoluted tubules of young and aged rats. We performed micropuncture experiments inhibiting the Na+/H+ exchanger with EIPA (10,4 M) and the V-H+ATPase with bafilomycin (10,6 M). We used antibodies against the NHE3 isoform of the Na+/H+ exchanger and the subunit E of the V-H+ATPase for detecting by Western blot the abundance of these proteins in brush border membrane vesicles from proximal convoluted tubules of young and old rats. The abundance of NHE3 and the V-H+ATPase was similar in 18-month-old and 3-month-old rats. The bicarbonate flux in old rats was 30% lower than in young rats. EIPA reduced by 60% and bafilomycin by 30% in young rats; in contrast, EIPA reduced by ,40% and bafilomycin by ,50% in old rats. The inhibited by bafilomycin was the same in young and old rats: 0.62 nmol · cm,2· s,1 and 0.71 nmol · cm,2· s,1, respectively. However, the EIPA-sensitive fraction was larger in young than in old rats: 1.26 nmol · cm,2· s,1 vs. 0.85 nmol · cm,2· s,1, respectively. These results suggest that the component more affected in bicarbonate reabsorption of proximal convoluted tubules from aged rats is the Na+ -H+ exchanger, probably a NHE isoform different from NHE3. [source] Uptake of lamivudine by rat renal brush border membrane vesiclesJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 1 2002Takatoshi Takubo Uptake of lamivudine, a nucleoside analogue antiviral agent, by brush border membrane vesicles (BBMV) prepared from rat renal cortex was investigated. Initial uptake of lamivudine by BBMV was stimulated in the presence of an outward pH gradient. Determination of the kinetic parameters of the initial uptake yielded apparent Km and Vmax values of 2.28 mM and 1.56 nmol (mg protein),1 (20 s),1, respectively. The pH-driven uptake of lamivudine was inhibited by organic cations such as trimethoprim and cimetidine. The inhibitory effect of trimethoprim on lamivudine uptake was competitive, with an apparent Ki of 27.6 ,M. The uptake of lamivudine was also inhibited by nitrobenzylthioinosine, a representative inhibitor of nucleoside transport, and by other nucleoside analogues, such as azidothymidine and dideoxycytidine, that are excreted by renal tubular secretion. These findings suggest that efflux of lamivudine at the brush border membrane of renal tubular epithelium is mediated by an H+/lamivudine antiport system, which may correspond to the H+/organic cation antiport system, and that this system is also involved in the renal secretion of other nucleoside analogues. [source] A membrane-bound FtsH protease is involved in osmoregulation in Synechocystis sp.MOLECULAR MICROBIOLOGY, Issue 1 2007PCC 6803: the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis Summary Protein quality control and proteolysis are involved in cell maintenance and environmental acclimatization in bacteria and eukaryotes. The AAA protease FtsH2 of the cyanobacterium Synechocystis sp. PCC 6803 was identified during a screening for mutants impaired in osmoregulation. The ftsH2, mutant was salt sensitive because of a decreased level of the osmoprotectant glucosylglycerol (GG). In spite of wild type-like transcription of the ggpS gene in ftsH2, cells the GgpS protein content increased but only low levels of GgpS activity were observed. Consequently, salt tolerance of the ftsH2, mutant decreased while addition of external osmolyte complemented the salt sensitivity. The proteolytic degradation of the GgpS protein by FtsH2 was demonstrated by an in vitro assay using inverted membrane vesicles. The GgpS is part of a GG synthesizing complex, because yeast two-hybrid screens identified a close interaction with the GG-phosphate phosphatase. Besides GgpS as the first soluble substrate of a cyanobacterial FtsH protease, several other putative targets were identified by a proteomic approach. We present a novel molecular explanation for the salt-sensitive phenotype of bacterial ftsH, mutants as the result of accumulation of inactive enzymes for compatible solute synthesis, in this case GgpS the key enzyme of GG synthesis. [source] Release of the type I secreted ,-haemolysin via outer membrane vesicles from Escherichia coliMOLECULAR MICROBIOLOGY, Issue 1 2006Carlos Balsalobre Summary The ,-haemolysin is an important virulence factor commonly expressed by extraintestinal pathogenic Escherichia coli. The secretion of the ,-haemolysin is mediated by the type I secretion system and the toxin reaches the extracellular space without the formation of periplasmic intermediates presumably in a soluble form. Surprisingly, we found that a fraction of this type I secreted protein is located within outer membrane vesicles (OMVs) that are released by the bacteria. The ,-haemolysin appeared very tightly associated with the OMVs as judged by dissociation assays and proteinase susceptibility tests. The ,-haemolysin in OMVs was cytotoxically active and caused lysis of red blood cells. The OMVs containing the ,-haemolysin were distinct from the OMVs not containing ,-haemolysin, showing a lower density. Furthermore, they differed in protein composition and one component of the type I secretion system, the TolC protein, was found in the lower density vesicles. Studies of natural isolates of E. coli demonstrated that the localization of ,-haemolysin in OMVs is a common feature among haemolytic strains. We propose an alternative pathway for the transport of the type I secreted ,-haemolysin from the bacteria to the host cells during bacterial infections. [source] Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selectionMOLECULAR MICROBIOLOGY, Issue 1 2004Luyan Ma Summary Division site selection in Escherichia coli requires that the MinD protein interact with itself and with MinC and MinE. MinD is a member of the NifH-ArsA-Par-MinD subgroup of ATPases. The MinE,MinD interaction results in activation of MinD ATPase activity in the presence of membrane vesicles. The sites within MinD responsible for its interaction with MinC and MinE were studied by site-directed mutagenesis and yeast two-hybrid analysis, guided by the known three-dimensional structure of MinD proteins. This provided evidence that MinC and MinE bind to overlapping sites on the MinD surface. The results also suggested that MinE and the invariant Lys11 residue in the ATPase P-loop of MinD compete for binding to a common site within the MinD structure, thereby providing a plausible structural basis for the ability of MinE to activate the ATPase activity of MinD. [source] |