Membrane Surface Area (membrane + surface_area)

Distribution by Scientific Domains


Selected Abstracts


Application of stereology to dermatological research

EXPERIMENTAL DERMATOLOGY, Issue 12 2009
Søren Kamp
Abstract:, Stereology is a set of mathematical and statistical tools to estimate three-dimensional (3-D) characteristics of objects from regular two-dimensional (2-D) sections. In medicine and biology, it can be used to estimate features such as cell volume, cell membrane surface area, total length of blood vessels per volume tissue and total number of cells. The unbiased quantification of these 3-D features allows for a better understanding of morphology in vivo compared with 2-D methods. This review provides an introduction to the field of stereology with specific emphasis on the application of stereology to dermatological research by supplying a short insight into the theoretical basis behind the technique and presenting previous dermatological studies in which stereology was an integral part. Both the theory supporting stereology and a practical approach in a dermatological setting are reviewed with the aim to provide the reader with the capability to better assess papers employing stereological estimators and to design stereological studies independently. [source]


GIGANTEA is a component of a regulatory pathway determining wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis thaliana

THE PLANT JOURNAL, Issue 4 2010
Joshua Edwards
Summary Transfer cells are specialised transport cells containing invaginated wall ingrowths that generate an amplified plasma membrane surface area with high densities of transporter proteins. They trans -differentiate from differentiated cells at sites at which enhanced rates of nutrient transport occur across apo/symplasmic boundaries. Despite their physiological importance, little is known of the molecular mechanisms regulating construction of their intricate wall ingrowths. We investigated the genetic control of wall ingrowth formation in phloem parenchyma transfer cells of leaf minor veins in Arabidopsis thaliana. Wall ingrowth development in these cells is substantially enhanced upon exposing plants to high-light or cold treatments. A hierarchical bioinformatic analysis of public microarray datasets derived from the leaves of plants subjected to these treatments identified GIGANTEA (GI) as one of 46 genes that are commonly up-regulated twofold or more under both high-light and cold conditions. Histological analysis of the GI mutants gi-2 and gi-3 showed that the amount of phloem parenchyma containing wall ingrowths was reduced 15-fold compared with wild-type. Discrete papillate wall ingrowths were formed in gi-2 plants but failed to develop into branched networks. Wall ingrowth development in gi-2 was not rescued by exposing these plants to high-light or cold conditions. In contrast, over-expression of GI in the gi-2 background restored wall ingrowth deposition to wild-type levels. These results indicate that GI regulates the ongoing development of wall ingrowth networks at a point downstream of inputs from environmental signals. [source]


Hemocompatibility Assessment of Carbonic Anhydrase Modified Hollow Fiber Membranes for Artificial Lungs

ARTIFICIAL ORGANS, Issue 5 2010
Heung-Il Oh
Abstract Hollow fiber membrane (HFM)-based artificial lungs can require a large blood-contacting membrane surface area to provide adequate gas exchange. However, such a large surface area presents significant challenges to hemocompatibility. One method to improve carbon dioxide (CO2) transfer efficiency might be to immobilize carbonic anhydrase (CA) onto the surface of conventional HFMs. By catalyzing the dehydration of bicarbonate in blood, CA has been shown to facilitate diffusion of CO2 toward the fiber membranes. This study evaluated the impact of surface modifying a commercially available microporous HFM-based artificial lung on fiber blood biocompatibility. A commercial poly(propylene) Celgard HFM surface was coated with a siloxane, grafted with amine groups, and then attached with CA which has been shown to facilitate diffusion of CO2 toward the fiber membranes. Results following acute ovine blood contact indicated no significant reduction in platelet deposition or activation with the siloxane coating or the siloxane coating with grafted amines relative to base HFMs. However, HFMs with attached CA showed a significant reduction in both platelet deposition and activation compared with all other fiber types. These findings, along with the improved CO2 transfer observed in CA modified fibers, suggest that its incorporation into HFM design may potentiate the design of a smaller, more biocompatible HFM-based artificial lung. [source]


Oxygenation,Ozonation of Blood During Extracorporeal Circulation: In Vitro Efficiency of a New Gas Exchange Device

ARTIFICIAL ORGANS, Issue 9 2007
Velio Bocci
Abstract:, We have investigated the performance of a new gas exchange device (GED), named L001, specifically devised for the ozonation of human blood during extracorporeal circulation. This procedure, defined with the acronym "EBOO," means "extracorporeal blood oxygenation,ozonation." The innovative GED is made of microporous, ozone-resistant, polipropylene hollow fibers with an external diameter of 200 µm, a thickness of 50 µm, and a membrane surface area of 0.22 m2. The material is coated with phosphorylcholine on the external side in contact with the circulating blood, while a gas mixture, necessarily composed of medical oxygen and ozone (about 99 and 1%, respectively), flows inside the fibers in opposite direction. The new GED has been tested by using a buffered saline solution containing KI and by varying several parameters, and it has shown to be very versatile and efficient. Its main characteristics are minimal foreign surface contact, high gas transfer, and negligible priming volume. This device appears to be a practical, nontoxic, and rather inexpensive tool for performing ozonation of blood for already defined human diseases. [source]


Artificial neural network modeling of O2 separation from air in a hollow fiber membrane module

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2008
S. S. Madaeni
Abstract In this study artificial neural network (ANN) modeling of a hollow fiber membrane module for separation of oxygen from air was conducted. Feed rates, transmembrane pressure, membrane surface area, and membrane permeability for the present constituents in the feed were network input data. Output data were rate of permeate from the membrane, the amount of N2 in the remaining flow, and the amount of O2 in the permeate flow. Experimental data were obtained from software developed by Research Institute of Petroleum Industry (RIPI). A part of the data generated by this software was confirmed by experimental results available in literature. Two third of the data were employed for training ANNs. Based on different training algorithms, radial basis function (RBF) was found as the best network with minimum training error. Generalization capability of best RBF networks was checked by one third of unseen data. The network was able to properly predict new data that incorporate excellent performance of the network. The developed model can be used for optimization and online control. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Novel application of oxygen-transferring membranes to improve anaerobic wastewater treatment

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2005
Anthony S. Kappell
Abstract Anaerobic biological wastewater treatment has numerous advantages over conventional aerobic processes; anaerobic biotechnologies, however, still have a reputation for low-quality effluents and operational instabilities. In this study, anaerobic bioreactors were augmented with an oxygen-transferring membrane to improve treatment performance. Two anaerobic bioreactors were fed a synthetic high-strength wastewater (chemical oxygen demand, or COD, of 11,000 mg l,1) and concurrently operated until biomass concentrations and effluent quality stabilized. Membrane aeration was then initiated in one of these bioreactors, leading to substantially improved COD removal efficiency (>95%) compared to the unaerated control bioreactor (,65%). The membrane-augmented anaerobic bioreactor required substantially less base addition to maintain circumneutral pH and exhibited 75% lower volatile fatty acid concentrations compared to the unaerated control bioreactor. The membrane-aerated bioreactor, however, failed to improve nitrogenous removal efficiency and produced 80% less biogas than the control bioreactor. A third membrane-augmented anaerobic bioreactor was operated to investigate the impact of start-up procedure on nitrogenous pollutant removal. In this bioreactor, excellent COD (>90%) and nitrogenous (>95%) pollutant removal efficiencies were observed at an intermediate COD concentration (5,500 mg l,1). Once the organic content of the influent wastewater was increased to full strength (COD = 11,000 mg l,1), however, nitrogenous pollutant removal stopped. This research demonstrates that partial aeration of anaerobic bioreactors using oxygen-transferring membranes is a novel approach to improve treatment performance. Additional research, however, is needed to optimize membrane surface area versus the organic loading rate to achieve the desired effluent quality. © 2005 Wiley Periodicals, Inc. [source]


Reversible Control of Exo - and Endo -Budding Transitions in a Photosensitive Lipid Membrane

CHEMBIOCHEM, Issue 2 2009
Ken-ichi Ishii
Abstract We have developed a method for the photomanipulation of lipid membrane morphology in which the shape of a vesicle can be switched by light through the use of a synthetic photosensitive amphiphile containing an azobenzene unit (KAON12). We prepared cell-sized liposomes from KAON12 and 1,2-dioleoyl- sn -glycero-3-phosphocholine (DOPC) and conducted real-time observations of vesicular transformation in the photosensitive liposome by phase-contrast microscopy. Budding transitions,either budding toward the centre of the liposome (endo -bud) or budding out of the liposome (exo- bud),could be controlled by light. We discuss the mechanism of this transformation in terms of the change in the effective membrane surface area due to photoisomerization of the constituent molecules. [source]