Home About us Contact | |||
Membrane Separation Processes (membrane + separation_process)
Selected AbstractsCLARIFICATION AND PURIFICATION OF AQUEOUS STEVIA EXTRACT USING MEMBRANE SEPARATION PROCESSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 3 2009M.H.M. REIS ABSTRACT Stevia rebaudiana Bertoni is a native plant from South America and its active constituents have been considered the "sweeteners of the future."Stevia is a natural diet-sweetening source, safe to health and without calories. However, the obtained raw extract is foul smelling, bitter tasting, dark brown colored, and presents suspension matter due to organic and inorganic compounds. Therefore, further purification/clarification is essential in order to get a product of commercial quality. In this work ceramic membranes were applied in the stevia extract clarification process. The process was carried out under different membrane pore sizes and at different pressure values. The best clarification result was obtained with the membrane of 0.1 µm at 4 bar. On the other hand, the best condition for the flux was obtained with the membrane of 0.2 µm at 6 bar. The process with all the tested membranes and conditions achieved recovery of sweeteners higher than 90%. Finally, a filtration mathematical model was applied to describe the flux behavior, showing that the main fouling phenomenon during the process occurred because of the complete blocking of pores. PRACTICAL APPLICATION Stevia is the world's only all-natural sweetener with zero calories, zero carbohydrates and a zero glycemic index. However, the obtained stevia extract has a dark brown appearance, mainly because of the presence of impurities. In this work the membrane separation process was studied for stevia extract clarification and purification in order to get a product with higher commercial acceptability. The obtained results showed that total clarification and recuperation of sweeteners was almost achieved. Nonetheless, membrane fouling is an inevitable problem during membrane filtration. The mathematical analysis of the fouling occurrences showed that the complete blocking of pores is the main cause for the membrane permeability decrease. [source] L -Lysine Monohydrochloride Syrup Concentration using a Membrane Hybrid Process of Ultrafiltration and Vacuum Membrane DistillationCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 11 2008O. Bakhtiari Abstract The development of energy saving membrane separation processes is finding a unique position in process industries. One of the important areas where they are employed is the biotechnology industry. This industry has its own specifications and requirements, e.g., levels of diluteness, thermal, chemical and shear fragility. Membrane separation processes have the characteristics necessary to match these specifications and needs. In this research, the determination of the experimental concentration of L -Lysine monohydrochloride (L -lysine-HCl) syrup was investigated using ultrafiltration (UF) and vacuum membrane distillation (VMD) hybrid membrane processes. Four parameters that are known to have significant influence on the UF process were examined, i.e., pressure difference across the membrane, feed concentration of L -lysine-HCl, feed velocity on the membrane surface, and pH. For the VMD unit, pressure difference and pH were replaced with feed temperature and vacuum pressure on the permeate side of membrane. Each process was carried out separately and the results were used to design a bench-scale process. In order to save time and money, the Taguchi method of experimental design was employed. The effects of feed concentration, pressure difference across the membrane, feed velocity on the membrane surface, and pH on the target variable, i.e., the membrane flux, in the UF process were 39.93, 38.65, 9.36, and 9.59,%, respectively. For the VMD process, these values were 64.79, 22.16, 6.21, and 2.14,% for feed temperature, feed concentration, vacuum pressure on the permeate side, and feed velocity on the membrane surface, respectively. [source] A study on membrane distillation by a solar thermal-driven systemHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 7 2007Tsung-Ching Chen Abstract Membrane distillation (MD) is a membrane separation process that has long been investigated in small scale laboratory studies and has the potential to become a viable tool for water desalination. MD is a separation process that combines simultaneous mass and heat transfer through a hydrophobic microporous membrane. A solar collector is used in direct contact membrane distillation (DCMD) to heat seawater as a temperature driving force in heat transfer to establish seawater desalting systems. The effect of the temperature difference makes the brine vaporize in the hot fluid side and condense in the cold fluid side. The optimal operating parameters on the pure water production rate will also be examined in this study. The purposes of this study are to develop the theoretical heat and mass transfer formulations, simulate heat transfer rate of solar collector with internal fins in membrane distillation, and investigate the mass-transfer efficiency improvement in membrane distillation with the brine flow rate, solar collector efficiency, and temperature difference between both sides of membrane as parameters. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(7): 417,428, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20172 [source] CLARIFICATION AND PURIFICATION OF AQUEOUS STEVIA EXTRACT USING MEMBRANE SEPARATION PROCESSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 3 2009M.H.M. REIS ABSTRACT Stevia rebaudiana Bertoni is a native plant from South America and its active constituents have been considered the "sweeteners of the future."Stevia is a natural diet-sweetening source, safe to health and without calories. However, the obtained raw extract is foul smelling, bitter tasting, dark brown colored, and presents suspension matter due to organic and inorganic compounds. Therefore, further purification/clarification is essential in order to get a product of commercial quality. In this work ceramic membranes were applied in the stevia extract clarification process. The process was carried out under different membrane pore sizes and at different pressure values. The best clarification result was obtained with the membrane of 0.1 µm at 4 bar. On the other hand, the best condition for the flux was obtained with the membrane of 0.2 µm at 6 bar. The process with all the tested membranes and conditions achieved recovery of sweeteners higher than 90%. Finally, a filtration mathematical model was applied to describe the flux behavior, showing that the main fouling phenomenon during the process occurred because of the complete blocking of pores. PRACTICAL APPLICATION Stevia is the world's only all-natural sweetener with zero calories, zero carbohydrates and a zero glycemic index. However, the obtained stevia extract has a dark brown appearance, mainly because of the presence of impurities. In this work the membrane separation process was studied for stevia extract clarification and purification in order to get a product with higher commercial acceptability. The obtained results showed that total clarification and recuperation of sweeteners was almost achieved. Nonetheless, membrane fouling is an inevitable problem during membrane filtration. The mathematical analysis of the fouling occurrences showed that the complete blocking of pores is the main cause for the membrane permeability decrease. [source] Photocatalytic membrane reactors: case studies and perspectivesASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2009V. Loddo Abstract Photocatalysis by polycrystalline semiconductor oxides is being successfully applied to the abatement of organic and inorganic pollutants both in gas and in liquid phase. In order to increase the efficiency of this method, the coupling of this technology with the membrane separation process has been the object of sound investigation. In this combination, the membrane may act in different ways: to confine the photocatalytic powder in the reacting suspension, to selectively separate the photoreaction products, or to be the support of photocatalyst. This article reports recent studies in which different types of membranes (such as distillation, dialysis, nanofiltration, pervaporation and osmosis membranes) are used in hybrid systems. An additional advantage of coupling is that the photocatalyst prevents the microbial fouling offering a strong potential for the use of new types of thin-film-composite membrane. Perspectives and future possible application of the synergy between membranes and photocatalytic reactors are also emphasised. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] An overview of the mathematical modelling of liquid membrane separation processes in hollow fibre contactorsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2009E Bringas Abstract Liquid membranes have traditionally been employed for liquid/liquid mass transfer and have found applications in industrial, biomedical and analytical fields as well as in hydrometallurgical processes, wastewater treatment and remediation of polluted groundwater. However, in spite of the known advantages of liquid membranes, there are few examples of industrial application. The development of reliable mathematical models and design parameters (mass transport coefficients and equilibrium or kinetic parameters associated with the interfacial reactions) is a necessary step for design, cost estimation, process optimisation and scale-up. This work reports an overview of the different approaches that have been proposed in the literature to the mathematical modelling of liquid membrane separation processes in hollow fibre contactors providing, at the same time, a useful guideline to characterise the mass transport phenomena and a tool for the optimal design and intensification of separation processes. Copyright © 2009 Society of Chemical Industry [source] Behaviour of polysorbate 20 during dialysis, concentration and filtration using membrane separation techniquesJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2008Hanns-Christian Mahler Abstract During formulation development of a therapeutic protein, combinations of buffers, pH and excipients need to be tested. As the protein bulk solution used for formulation development usually contains a buffer component at a defined pH and potentially one or more excipients already, this bulk requires to be processed. In case low concentrations of non-ionic surfactants, for example polysorbate 20, are already present in the bulk, the surfactant needs to be removed in lab-scale for further development use. The scope of the work was to study the behaviour of low concentrations of polysorbate 20 during membrane separation processes. The first part focuses on evaluating the behaviour of polysorbate 20 during a dialysis process, whereas the second part analyses concentration changes of polysorbate during a membrane concentration process using a stirred cell. The third part analyses potential membrane absorption of polysorbate at sterilizing-grade filters. In conclusion, it was found that polysorbate could not be significantly reduced during a dialysis process and accumulated during a membrane concentration process in unreproducable manner. During sterile filtration, no significant influence on the concentration of polysorbate was measurable. In any case, it is recommendable to quantify the concentration of polysorbate during critical membrane process steps in pharmaceutical industry. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:764,774, 2008 [source] L -Lysine Monohydrochloride Syrup Concentration using a Membrane Hybrid Process of Ultrafiltration and Vacuum Membrane DistillationCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 11 2008O. Bakhtiari Abstract The development of energy saving membrane separation processes is finding a unique position in process industries. One of the important areas where they are employed is the biotechnology industry. This industry has its own specifications and requirements, e.g., levels of diluteness, thermal, chemical and shear fragility. Membrane separation processes have the characteristics necessary to match these specifications and needs. In this research, the determination of the experimental concentration of L -Lysine monohydrochloride (L -lysine-HCl) syrup was investigated using ultrafiltration (UF) and vacuum membrane distillation (VMD) hybrid membrane processes. Four parameters that are known to have significant influence on the UF process were examined, i.e., pressure difference across the membrane, feed concentration of L -lysine-HCl, feed velocity on the membrane surface, and pH. For the VMD unit, pressure difference and pH were replaced with feed temperature and vacuum pressure on the permeate side of membrane. Each process was carried out separately and the results were used to design a bench-scale process. In order to save time and money, the Taguchi method of experimental design was employed. The effects of feed concentration, pressure difference across the membrane, feed velocity on the membrane surface, and pH on the target variable, i.e., the membrane flux, in the UF process were 39.93, 38.65, 9.36, and 9.59,%, respectively. For the VMD process, these values were 64.79, 22.16, 6.21, and 2.14,% for feed temperature, feed concentration, vacuum pressure on the permeate side, and feed velocity on the membrane surface, respectively. [source] |