Membrane Reactor Performance (membrane + reactor_performance)

Distribution by Scientific Domains


Selected Abstracts


Theoretical study of a membrane reactor for the water gas shift reaction under nonisothermal conditions

AICHE JOURNAL, Issue 12 2009
Marķa E. Adrover
Abstract A simulation of a membrane reactor for the water gas shift reaction is carried out by means of a 1D pseudo-homogeneous nonisothermal mathematical model. The composite membrane consists of a dense layer of Pd (selective to H2) supported over a porous ceramic layer. The effect of temperature, overall heat-transfer coefficient, and mode of operation on the membrane reactor performance and stability are analyzed, and the results obtained are compared with those corresponding to a reactor with no hydrogen permeation. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Design of mixed conducting ceramic membranes/reactors for the partial oxidation of methane to syngas

AICHE JOURNAL, Issue 10 2009
Xiaoyao Tan
Abstract The performance of mixed conducting ceramic membrane reactors for the partial oxidation of methane (POM) to syngas has been analyzed through a two-dimensional mathematical model, in which the material balance, the heat balance and the momentum balance for both the shell and the tube phase are taken into account. The modeling results indicate that the membrane reactors have many advantages over the conventional fixed bed reactors such as the higher CO selectivity and yield, the lower heating point and the lower pressure drop as well. When the methane feed is converted completely into product in the membrane reactors, temperature flying can take place, which may be restrained by increasing the feed flow rate or by lowering the operation temperature. The reaction capacity of the membrane reactor is mainly determined by the oxygen permeation rate rather than by the POM reaction rate on the catalyst. In order to improve the membrane reactor performance, reduction of mass transfer resistance in the catalyst bed is necessary. Using the smaller membrane tubes is an effective way to achieve a higher reaction capacity, but the pressure drop is a severe problem to be faced. The methane feed velocity for the operation of mixed conducting membrane reactors should be carefully regulated so as to obtain the maximum syngas yield, which can be estimated from their oxygen permeability. The mathematical model and the kinetic parameters have been validated by comparing modeling results with the experimental data for the La0.6Sr0.4Co0.2Fe0.8O3-, (LSCF) membrane reactor. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Solar membrane natural gas steam-reforming process: evaluation of reactor performance

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010
M. De Falco
Abstract In this work, the performance of an innovative plant for efficient hydrogen production using solar energy for the process heat duty requirements has been evaluated via a detailed 2D model. The steam-reforming reactor consists of a bundle of coaxial double tubes assembled in a shell. The annular section of each tube is the reaction zone in which Ni-based catalyst pellets are packed, whereas the inner tube is a dense Pd-based selective membrane that is able to remove hydrogen from the reaction zone. By coupling reaction and hydrogen separation, equilibrium constrains inside the reactor are circumvented and high methane conversions at relatively low temperatures are achieved. The heat needed for the steam-reforming reaction at this low operating temperature can be supplied by using a molten salt stream, heated up to 550 °C by a parabolic mirror solar plant, as heating fluid. The effects on membrane reactor performance of some operating conditions, as gas mixture residence time, reaction pressure and steam-to-carbon ratio, are assessed together with the enhancement of methane conversion with respect to the traditional process, evaluated in the range 40.5,130.9% at the same operating conditions. Moreover, owing to the use of a solar source for chemical process heat duty requirements, the greenhouse gases (GHG) reduction is estimated to be in the range 33,67%. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Model-based characterization of an amino acid racemase from Pseudomonas putida DSM 3263 for application in medium-constrained continuous processes

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2007
M. Bechtold
Abstract The amino acid racemase with broad substrate specificity from Pseudomonas putida DSM 3263 was overproduced and characterized with respect to application in an integrated multi-step process (e.g., dynamic kinetic resolution) that,theoretically,would allow for 100% chemical yield and 100% enantiomeric excess. Overexpression of the racemase gene in Escherichia coli delivered cell free extract with easily sufficient activity (20,50 U,mg,1 total protein) for application in an enzyme membrane reactor (EMR) setting. Model-based experimental analysis of a set of enzyme assays clearly indicated that racemization of the model substrates D - or L -methionine could be accurately described by reversible Michaelis,Menten kinetics. The corresponding kinetic parameters were determined from progress curves for the entire suitable set of aqueous-organic mixtures (up to 60% methanol and 40% acetonitrile) that are eligible for an integrated process scheme. The resulting kinetic expression could be successfully applied to describe enzyme membrane reactor performance under a large variety of settings. Model-based calculations suggested that a methanol content of 10% and an acetonitrile content of 20% provide maximum productivity in EMR operations. However product concentrations were decreased in comparison to purely aqueous operation due to decreasing solubility of methionine with increasing organic solvent content. Finally, biocatalyst stability was investigated in different solvent compositions following a model-based approach. Buffer without organic content provided excellent stability at moderate temperatures (20,35°C) while addition of 20% acetonitrile or methanol drastically reduced the half-life of the racemase. Biotechnol. Bioeng. 2007; 98: 812,824. © 2007 Wiley Periodicals, Inc. [source]