Membrane Conductance (membrane + conductance)

Distribution by Scientific Domains


Selected Abstracts


Background potassium channel block and TRPV1 activation contribute to proton depolarization of sensory neurons from humans with neuropathic pain

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004
Thomas K. Baumann
Abstract Protons cause a sustained depolarization of human dorsal root ganglion (DRG) neurons [Baumann et al. (1996) Pain, 65, 31,38]. In the present study we sought to determine which ion channels are expressed in human DRG neurons that could mediate the sustained responses observed in the patch-clamp recordings. RT-PCR of material from the DRG tissue revealed the presence of mRNAs for a nonselective cation channel that is activated by protons (TRPV1) and background potassium channels that are blocked by protons (TASK-1, TASK-3 and Kir2.3). Highly acidic solution (pH 5.4) applied to cultured DRG neurons evoked prolonged currents that were associated with a net increase in membrane conductance. Consistent with the involvement of TRPV1, these proton-evoked currents were blocked by capsazepine and were only found in neurons that responded to capsaicin with an increase in membrane conductance. Less acidic extracellular solution (pH 6.0) evoked such currents only rarely, but was able to strongly enhance the currents evoked by capsaicin. Capsazepine (1 µm) blocked the currents evoked by capsaicin at pH 7.35, as well as the potentiated responses to capsaicin at pH 6.0. In neurons that were not excited by capsaicin, moderate extracellular acidification (pH 6.0) caused a sustained decrease in resting membrane conductance. The decrease in membrane conductance by protons was associated with inhibition of background potassium channels. This excitatory effect of protons was not blocked by capsazepine. We conclude that in most neurons the sustained depolarization in response to moderately acidic solutions is the result of blocked background potassium channels. In a subset of neurons, TRPV1 also contributes. [source]


Involvement of Calmodulin in Glucagon-Like Peptide 1(7-36) Amide-Induced Inhibition of the ATP-Sensitive K+ Channel in Mouse Pancreatic ,-Cells

EXPERIMENTAL PHYSIOLOGY, Issue 3 2001
W. G. Ding
The present investigation was designed to examine whether calmodulin is involved in the inhibition of the ATP-sensitive K+ (KATP) channel by glucagon-like peptide 1(7-36) amide (GLP-1) in mouse pancreatic ,-cells. Membrane potential, single channel and whole-cell currents through the KATP channels, and intracellular free Ca2+ concentration ([Ca2+]i) were measured in single mouse pancreatic ,-cells. Whole-cell patch-clamp experiments with amphotericin-perforated patches revealed that membrane conductance at around the resting potential is predominantly supplied by the KATP channels in mouse pancreatic ,-cells. The addition of 20 nM GLP-1 in the presence of 5 mM glucose significantly reduced the membrane KATP conductance, accompanied by membrane depolarization and the generation of electrical activity. A calmodulin inhibitor N -(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7, 20 ,M) completely reversed the inhibitory actions of GLP-1 on the membrane KATP conductance and resultant membrane depolarization. Cell-attached patch recordings confirmed the inhibition of the KATP channel activity by 20 nM GLP-1 and its restoration by 20 ,M W-7 or 10 ,M calmidazolium at the single channel level. Bath application of 20 ,M W-7 also consistently abolished the GLP-1-evoked increase in [Ca2+]i in the presence of 5 mM glucose. These results strongly suggest that the mechanisms by which GLP-1 inhibits the KATP channel activity accompanied by the initiation of electrical activity in mouse pancreatic ,-cells include a calmodulin-dependent mechanism in addition to the well-documented activation of the cyclic AMP-protein kinase A system. [source]


Functional Studies of Synthetic Gramicidin Hybrid Ion Channels in CHO Cells

CHEMBIOCHEM, Issue 5 2007
Ryszard Wesolowski
Abstract The function of a gramicidin hybrid ion channel in living Chinese hamster ovary (CHO) cells was investigated by the patch clamp method. The synthetic ion channel 1 consists of two cyclohexyl ether amino acids that link two minigramicidin strands. With 1 at a concentration of 1.0 ,M, an increase in the whole-cell membrane conductance was observed after 1.37 min. The conductance showed larger currents when Cs+ was used as charge carrier than when Na+ and K+ were used. In single-channel recordings with Cs+ as charge carrier, the substance showed comparable single-channel amplitudes in the membrane of living cells and artificial black lipid bilayers. In addition to functioning as a cation channel, compound 1 appeared to be a water channel. Exposure of the CHO cells to an extracellular hypoosmotic solution did not substantially change the cell volume. Extracellular hypoosmotic conditions in the presence of 1 increased the cell size to 146.5,% that of the control. Thus, the synthetic hybrid channel 1 can function as a cation channel with some Cs+ specificity, and as a water channel in CHO cells. [source]


A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneurones

THE JOURNAL OF PHYSIOLOGY, Issue 2 2002
Yue Dai
During fictive locomotion the excitability of adult cat lumbar motoneurones is increased by a reduction (a mean hyperpolarization of ,6.0 mV) of voltage threshold (Vth) for action potential (AP) initiation that is accompanied by only small changes in AP height and width. Further examination of the experimental data in the present study confirms that Vth lowering is present to a similar degree in both the hyperpolarized and depolarized portions of the locomotor step cycle. This indicates that Vth reduction is a modulation of motoneurone membrane currents throughout the locomotor state rather than being related to the phasic synaptic input within the locomotor cycle. Potential ionic mechanisms of this locomotor-state-dependent increase in excitability were examined using three five-compartment models of the motoneurone innervating slow, fast fatigue resistant and fast fatigable muscle fibres. Passive and active membrane conductances were set to produce input resistance, rheobase, afterhyperpolarization (AHP) and membrane time constant values similar to those measured in adult cat motoneurones in non-locomoting conditions. The parameters of 10 membrane conductances were then individually altered in an attempt to replicate the hyperpolarization of Vth that occurs in decerebrate cats during fictive locomotion. The goal was to find conductance changes that could produce a greater than 3 mV hyperpolarization of Vth with only small changes in AP height (< 3 mV) and width (< 1.2 ms). Vth reduction without large changes in AP shape could be produced either by increasing fast sodium current or by reducing delayed rectifier potassium current. The most effective Vth reductions were achieved by either increasing the conductance of fast sodium channels or by hyperpolarizing the voltage dependency of their activation. These changes were particularly effective when localized to the initial segment. Reducing the conductance of delayed rectifier channels or depolarizing their activation produced similar but smaller changes in Vth. Changes in current underlying the AHP, the persistent Na+ current, three Ca2+ currents, the ,h' mixed cation current, the ,A' potassium current and the leak current were either ineffective in reducing Vth or also produced gross changes in the AP. It is suggested that the increased excitability of motoneurones during locomotion could be readily accomplished by hyperpolarizing the voltage dependency of fast sodium channels in the axon hillock by a hitherto unknown neuromodulatory action. [source]


Model study of time-dependent muscle response to pulsed electrical stimulation

BIOELECTROMAGNETICS, Issue 5 2010
Ravindra P. Joshi
Abstract A systems-level model analysis of neuromuscular response to external electrical stimulation is presented. Action potential (AP) generation, dynamics of voltage-based calcium release at the motor endplates controlled by the arrival of APs, and muscle force production are all comprehensively included. Numerical predictions exhibit trends that are qualitatively similar to measurements of muscle response in rats from a burst of cortical stimulation and a nanosecond impulse. Modulation of neural membrane conductances (including possible electroporation) that alters the neural impulse generation frequency is hypothesized as a possible mechanism leading to observed changes in muscle force production. Other possibilities such as calcium release at nerve end endings also exist. It is also proposed that multipulsing strategies and changing the electric field direction by using multielectrode systems would be useful. Bioelectromagnetics 31:361,370, 2010. © 2010 Wiley-Liss, Inc. [source]