Home About us Contact | |||
Melanoma Cells (melanoma + cell)
Kinds of Melanoma Cells Terms modified by Melanoma Cells Selected AbstractsChemInform Abstract: Synthesis and Antiproliferative Activities of Pyrrolo[2,3-d]pyrimidine Derivatives for Melanoma Cell.CHEMINFORM, Issue 11 2009Myung-Ho Jung Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Quercetin Enhances Melanogenesis By Increasing the Activity and Synthesis of Tyrosinase in Human Melanoma Cells and in Normal Human MelanocytesPIGMENT CELL & MELANOMA RESEARCH, Issue 1 2004Hidetaka Nagata Quercetin (3,3,,4,,5,7-pentahydroxyflavone) is a diphenyl propanoid widely distributed in edible plants. In this study, we examined the effect of quercetin on melanogenesis in human HMVII melanoma cells and in normal human epidermal melanocytes (NHEM) in the absence of ultraviolet radiation. Upon the addition of quercetin to the culture medium, the melanin content in melanoma cells (HMVII) increased remarkably in time- and dose-dependent manners. In addition, quercetin induced melanogenesis in cultured NHEM. As compared with controls, melanin content was increased about sevenfold by treatment with 20 ,M (HMVII) or 1 ,M (NHEM) quercetin for 7 d. Tyrosinase activity was also increased, to 61.8-fold higher than the control. The expression of tyrosinase protein was slightly increased by the addition of quercetin. However, quercetin did not affect the expression of tyrosinase mRNA. Tyrosinase activation by quercetin was blocked by actinomycin-D or by cycloheximide demonstrating that its actions in stimulating melanogenesis may involve both transcriptional and translational events. Tyrosinase activity was increased dramatically whereas the level of melanogenic inhibitor was remarkably decreased following quercetin treatment. Taken together, these results demonstrate that in human melanoma cells and in NHEM, quercetin stimulates melanogenesis by increasing tyrosinase activity and decreasing other factors such as melanogenic inhibitors. [source] Detection of Circulating Melanoma Cells by RT-PCR Amplification of Three Different Melanocyte-Specific mRNAs in a Mouse ModelPIGMENT CELL & MELANOMA RESEARCH, Issue 3 2000KATSUHIKO TSUKAMOTO Three different melanocyte-specific mRNAs are studied as potential markers for circulating melanoma cells in the serum of mice inoculated subcutaneously with B16F10 melanoma cells. These three mRNAs encode tyrosinase, tyrosinase related protein-2 (TRP-2) and Pmel17, proteins that are essential for the synthesis of melanin and are expressed specifically in melanocytes. We used reverse-transcription polymerase chain reaction (RT-PCR) to detect these three different melanocyte-specific mRNAs in the sera of B16F10 bearing mice. Since melanocytes would not normally be present in the blood, the detection of those transcripts should indicate the presence of circulating melanoma cells. RT-PCR detection of all three mRNAs was highly sensitive and specific. Our in vitro studies show that as few as 10 melanoma cells can be detected in 125 ,l blood and that in vivo, melanoma cells can be detected in blood samples from B16F10 melanoma bearing mice. Of these three mRNAs, Pmel17 mRNA is the most sensitive marker for detecting circulating melanoma cells compared with tyrosinase mRNA and TRP-2 mRNA. Moreover, this mouse model might be useful for basic research of malignant melanoma patients with haematogenous metastasis. [source] Blue Light Inhibits the Growth of B16 Melanoma CellsCANCER SCIENCE, Issue 5 2002Masayuki Ohara Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm2) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5,bromo,2,,deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. [source] Efficient Sialylation on Azidododecyl Lactosides by Using B16 Melanoma CellsCHEMISTRY & BIODIVERSITY, Issue 8 2005Yoshimi Murozuka Lactoside primers (dodecyl lactoside derivatives) resemble intermediates in the biosynthetic pathway of glycolipids and, therefore, act as substrates for cellular enzyme-catalyzed glycosylation. To establish the optimal condition for the bioproduction of a large amount of valuable materials containing GM3-type oligosaccharides, two kinds of lactoside primers having the azido group in different positions were synthesized and introduced into B16 melanoma cells. The saccharide chains of both primers were elongated by cells to give GM3-type oligosaccharide derivatives, which were released to the culture medium. The amount of glycosylated product from newly synthesized 2-azidododecyl , -lactoside (primer,II) was almost twice that from 12-azidododecyl , -lactoside (primer,I). The effects of seeded cell number, primer concentration, and length of incubation time on the glycosylation efficiency were also investigated. The results showed that the higher the seeded cell number, the larger the amount of sialylated products obtained. The optimum concentrations of primers,I and II were found to be 200 and 100,,M, respectively. Above these concentrations, productivity and cell viability decreased. As regards the length of incubation time, the sialylated products increased linearly until 48,h, but productivity did not advance thereafter. These results represent the optimal conditions that are necessary for the mass production of GM3-type oligosaccharide using azidododecyl lactoside primers and B16 cells. [source] Noggin blocks invasive growth of murine B16-F1 melanoma cells in the optic cup of the chick embryo,,INTERNATIONAL JOURNAL OF CANCER, Issue 3 2008Christian Busch Abstract Melanoma cells originate from the neural crest and are characterized by high migratory potential and invasive growth. After transplantation into the neural tube of the chick embryo, melanoma cells spontaneously emigrate along the neural crest pathways without tumor formation or malignant growth. This emigration depends on the constitutive over-expression of bone morphogenetic protein-2 (BMP-2) and can be ablated by the BMP-antagonist noggin. When transplanted into the embryonic optic cup, melanoma cells invade the host tissue and form malignant tumors. Here, we asked if the invasive growth of melanoma cells in the optic cup could be influenced by BMP-2 or noggin. Mouse B16-F1 cells were grown as aggregates, treated with BMP-2 or noggin during aggregation and transplanted into the optic cup of 3-day chick embryos. After 3 days of subsequent incubation, embryos were evaluated for melanoma cell invasiveness. Immunohistochemical examination revealed that untreated and BMP-2-treated melanoma cells had grown malignantly into the host tissue. However, noggin pretreatment of the aggregates had blocked melanoma cell invasiveness and tumor formation. We conclude that invasive growth of melanoma cells in vivo is BMP-dependent and can be ablated by noggin, thus rendering noggin a promising agent for the treatment of BMP-over-expressing melanoma. © 2007 Wiley-Liss, Inc. [source] Cadherin expression pattern in melanocytic tumors more likely depends on the melanocyte environment than on tumor cell progressionJOURNAL OF CUTANEOUS PATHOLOGY, Issue 1 2004Sven Krengel Background:, Adhesion molecules have been assigned an important role in melanocytic tumor progression. By the loss of E-cadherin, melanocytes might escape the control of neighbouring keratinocytes. Although in vitro data support this hypothesis, there are yet no conclusive immunohistochemical results on cadherin expression in melanocytic tumors. Objective:, To gain detailed insight in the expression of cadherins and their cytoplasmic binding partners, the catenins, in various types of benign and malignant melanocytic neoplasms. Methods:, Immunohistochemical analysis of the expression of E-, P-, and N-cadherin and ,-, ,-, and ,-catenin in compound and dermal nevi, Spitz nevi, blue nevi, ultraviolet B (UVB)-irradiated nevi, and malignant melanomas of various tumor thickness. Results:, In both nevi and melanomas, E-cadherin expression in melanocytic cells decreased, following a gradient from junctional to deeper dermal localization. The pattern of E-cadherin expression was more heterogeneous in melanomas than in nevi. In some melanomas, E-cadherin was only weakly positive in the epidermal tumor cells. P-cadherin expression was similar to that of E-cadherin. N-cadherin expression in melanocytic lesions was a rare finding, however, a small percentage of melanomas showed expression in some cell nests. Some Spitz nevi exhibited strong N-cadherin immunoreactivity. Most melanocytic cells were ,- and ,-catenin-positive and ,-catenin-negative. UVB irradiation did not influence the expression of cadherins and catenins in melanocytic nevi in vivo. Conclusions:, It is presumed that the gradual loss of E-cadherin expression represents a reaction of melanocytic cells to altered conditions in the dermal environment, e.g. lack of contact to keratinocytes, or new contact with dermal extracellular matrix molecules, respectively. Melanoma cells apparently are less dependent on these environmental factors and, therefore, show a more heterogeneous expression pattern. This might be of importance for the adaptation of the tumor cells to local requirements. However, in view of our results, a causative role of (loss of ) E-cadherin or (gain of ) N-cadherin for melanocytic tumor progression still remains to be proven. [source] Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanomaPIGMENT CELL & MELANOMA RESEARCH, Issue 6 2009Kevin G. Chen Summary Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches have been developed such as biochemotherapy and immunotherapy. The most common cause of multidrug resistance (MDR) in human cancers is the expression and function of one or more ATP- binding cassette (ABC) transporters that efflux anticancer drugs from cells. Melanoma cells express a group of ABC transporters (such as ABCA9, ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, and ABCD1) that may be associated with the resistance of melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic melanin intermediates and metabolites. In this review, we propose a model (termed the ABC-M model) in which the intrinsic MDR of melanoma cells is at least in part because of the transporter systems that may also play a critical role in reducing the cytotoxicity of the melanogenic pathway in melanocytes. The ABC-M model suggests molecular strategies to reverse MDR function in the context of the melanogenic pathway, which could open therapeutic avenues towards the ultimate goal of circumventing clinical MDR in patients with melanoma. [source] Melanin as a Target for Melanoma Chemotherapy: Pro-oxidant Effect of Oxygen and Metals on Melanoma ViabilityPIGMENT CELL & MELANOMA RESEARCH, Issue 3 2003Patrick J. Farmer Melanoma cells have a poor ability to mediate oxidative stress, which may be attributed to constitutive abnormalities in their melanosomes. We hypothesize that disorganization of the melanosomes will allow chemical targeting of the melanin within. Chemical studies show that under oxidative conditions, synthetic melanins demonstrate increased metal affinity and a susceptibility to redox cycling with oxygen to form reactive oxygen species. The electron paramagnetic resonance (EPR)-active 5,5,-dimethyl-pyrollidine N-oxide spin adduct was used to show that binding of divalent Zn or Cu to melanin induces a pro-oxidant response under oxygen, generating superoxide and hydroxyl radicals. A similar pro-oxidant behaviour is seen in melanoma cell lines under external peroxide stress. Melanoma cultures grown under 95% O2/5% CO2 atmospheres show markedly reduced viability as compared with normal melanocytes. Cu- and Zn-dithiocarbamate complexes, which induce passive uptake of the metal ions into cells, show significant antimelanoma activity. The antimelanoma effect of metal- and oxygen-induced stress appears additive rather than synergistic; both treatments are shown to be significantly less toxic to melanocytes. [source] Proteomic and SAGE profiling of murine melanoma progression indicates the reduction of proteins responsible for ROS degradationPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2006Gustavo A. de Souza Abstract Using 2-DE of total cell protein extracts, we compared soluble proteins from murine melanoma lines Tm1 and Tm5 with proteins from the nontumoral cell melan-a from which they were derived. Seventy-one of the 452 spots (average) detected with CBB were differentially accumulated, i.e., increased or decreased twofold. Forty-four spots were identified by PMF/MALDI-TOF, 15 with increased and 29 with decreased protein levels. SAGE showed that 17/34 (50%) of the differentially accumulated proteins, pI range 4,7, presented similar differences at the mRNA level. Major reductions in protein were observed in tumor cells of proteins that degrade reactive oxygen species (ROS). Decreases of , twofold in GST, superoxide dismutase, aldehyde dehydrogenase, thioredoxin, peroxiredoxin 2, and peroxiredoxin 6 protein were observed. SAGE indicated the reduction of other proteins involved in ROS degradation. As expected, the accumulation of exogenous peroxides was significantly higher in the tumor cells while the levels of glutathionylation were two times lower in the tumor cells compared to melan-a. The differential accumulation of proteins involved in oncogene/tumor suppressor pathways was observed. Melanoma cells can favor survival pathways activated by ROS by inhibiting p53 pathways and activation of Ras and c-myc pathways. [source] 3- O -methylfunicone, a metabolite of Penicillium pinophilum, inhibits proliferation of human melanoma cells by causing G2 + M arrest and inducing apoptosisCELL PROLIFERATION, Issue 4 2009A. Baroni Objectives:, Melanoma cells take advantage of impaired ability to undergo programmed cell death in response to different external stimuli and chemotherapeutic drugs; this makes prevention of tumour progression very difficult. The aim of this study was to demonstrate whether 3- O -methylfunicone (OMF), a metabolite of Penicillium pinophilum, has the ability to arrest cell population growth and to induce apoptosis in A375P (parental) and A375M (metastasis derivatived) melanoma cell lines. Materials and methods:, Cell proliferation and apoptosis were analysed by flow cytometry, DNA fragmentation, caspase-3 and caspase-9 activation, and PARP-1 cleavage. Results:, We demonstrated that OMF affected cell proliferation in a time- and dose-dependent manner, reaching the best effect at concentration of 80 µg/ml for 24 h. Flow cytometry revealed that OMF caused significant G2 phase arrest, which was associated with marked decrease in cyclin B1/p34cdc2 complex and p21 induction. OMF also induced marked decrease of survivin expression. Reduced levels of apoptosis were evident after silencing p21 expression in both cell lines. Finally, the effect exercised by OMF on hTERT and TEP-1 gene expression confirmed the ability of this molecule to interfere with replicative ability of cells. Conclusions:, The results reported here seem to suggest that OMF as a promising molecule to include in strategies for treatment of melanoma. [source] Loss-of-function variants of the human melanocortin-1 receptor gene in melanoma cells define structural determinants of receptor functionFEBS JOURNAL, Issue 24 2002Jesús Sánchez Más The ,-melanocyte-stimulating hormone (,MSH) receptor (MC1R) is a major determinant of mammalian skin and hair pigmentation. Binding of ,MSH to MC1R in human melanocytes stimulates cell proliferation and synthesis of photoprotective eumelanin pigments. Certain MC1R alleles have been associated with increased risk of melanoma. This can be theoretically considered on two grounds. First, gain-of-function mutations may stimulate proliferation, thus promoting dysplastic lesions. Second, and opposite, loss-of-function mutations may decrease eumelanin contents, and impair protection against the carcinogenic effects of UV light, thus predisposing to skin cancers. To test these possibilities, we sequenced the MC1R gene from seven human melanoma cell (HMC) lines and three giant congenital nevus cell (GCNC) cultures. Four HMC lines and two GCNC cultures contained MC1R allelic variants. These were the known loss-of-function Arg142His and Arg151Cys alleles and a new variant, Leu93Arg. Moreover, impaired response to a superpotent ,MSH analog was demonstrated for the cell line carrying the Leu93Arg allele and for a HMC line homozygous for wild-type MC1R. Functional analysis in heterologous cells stably or transiently expressing this variant demonstrated that Leu93Arg is a loss-of-function mutation abolishing agonist binding. These results, together with site-directed mutagenesis of the vicinal Glu94, demonstrate that the MC1R second transmembrane fragment is critical for agonist binding and maintenance of a resting conformation, whereas the second intracellular loop is essential for coupling to the cAMP system. Therefore, loss-of-function, but not activating MC1R mutations are common in HMC. Their study provides important clues to understand MC1R structure-function relationships. [source] Expression of constructs of the neuronal isoform of myosin-Va interferes with the distribution of melanosomes and other vesicles in melanoma cellsCYTOSKELETON, Issue 2 2002Joăo Carlos da Silva Bizario Abstract Myosin-Va has been implicated in melanosome translocation, but the exact molecular mechanisms underlying this function are not known. In the dilute, S91 melanoma cells, melanosomes move to the cell periphery but do not accumulate in the tips of dendrites as occurs in wild-type B16 melanocytes; rather, they return and accumulate primarily at the pericentrosomal region in a microtubule-dependent manner. Expression of the full-length neuronal isoform of myosin-Va in S91 cells causes melanosomes to disperse, occupying a cellular area approximately twice that observed in non-transfected cells, suggesting a partial rescue of the dilute phenotype. Overexpression of the full tail domain in S91 cells is not sufficient to induce melanosome dispersion, rather it causes melanosomal clumping. Overexpression of the head and head-neck domains of myosin-Va in B16 cells does not alter the melanosome distribution. However, overexpression of the full tail domain in these cells induces melanosome aggregation and the appearance of tail-associated, aggregated particles or vesicular structures that exhibit variable degrees of staining for melanosomal and Golgi ,-COP markers, as well as colocalization with the endogenous myosin-Va. Altogether, the present data suggest that myosin-Va plays a role in regulating the direction of microtubule-dependent melanosome translocation, in addition to promoting the capture of melanosomes at the cell periphery as suggested by previous studies. These studies also reinforce the notion that myosin-V has a broader function in melanocytes by acting on vesicular targeting or intracellular protein trafficking. Cell Motil. Cytoskeleton 51:57,75, 2002. © 2002 Wiley-Liss, Inc. [source] Ocular Melanoma Metastatic to Skin: The Value of HMB-45 StainingDERMATOLOGIC SURGERY, Issue 6 2004Robert A. Schwartz MD Background: Cutaneous metastatic disease is an important finding that may represent the first sign of systemic cancer, or, if already known, that may change tumor staging and thus dramatically altered therapeutic plans. Although cutaneous metastases are relatively frequent in patients with cutaneous melanoma, they are less so from ocular melanoma. Objective: To demonstrate the value of HMB-45, staining in the detection of ocular melanoma metastatic to skin. Methods: The immunohistochemical stain HMB-45 a monoclonal antibody directed against intact human melanoma cells, was employed on a skin biopsy specimen from a cutaneous tumor. Results: HMB-45 staining was positive in the atypical hyperchromatic cells of the deep dermis. Conclusion: HMB-45 may be of value in the detection of ocular melanoma metastatic to skin. Cutaneous metastatic disease is a somewhat common and extremely important diagnosis. Although cutaneous metastases from cutaneous melanoma are relatively frequent, those from ocular melanomas are less so. Use of histochemical staining, especially the HMB-45 stain, allows confirmation of the diagnosis. [source] IL-15-induced human DC efficiently prime melanoma-specific naive CD8+ T cells to differentiate into CTLEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2007Peter Dubsky Abstract Monocytes differentiate into dendritic cells (DC) in response to GM-CSF combined with other cytokines including IL-4 and IL-15. Here, we show that IL15-DC are efficient in priming naive CD8+ T cells to differentiate into melanoma antigen-specific cytotoxic T,lymphocytes (CTL). While both melanoma peptide-pulsed IL15-DC and IL4-DC expand high-precursor frequency MART-1-specific CD8+ T cells after two stimulations in vitro, IL15-DC require much lower peptide concentration for priming. IL15-DC are more efficient in expanding gp100-specific CD8+ T cells and can expand CD8+ T cells specific for Tyrosinase and MAGE-3. CTL primed by IL15-DC are superior in their function as demonstrated by (i),higher IFN-, secretion, (ii),higher expression of Granzyme,B and Perforin, and (iii),higher killing of allogeneic melanoma cell lines, most particularly the HLA-A*0201+ Sk-Mel-24 melanoma cells that are resistant to killing by CD8+ T cells primed with IL4-DC. Supernatants of the sonicated cells demonstrate unique expression of IL-1, IL-8 and IL-15. Therefore, membrane-bound IL-15 might contribute to enhanced priming by IL15-DC. Thus, IL-15 induces myeloid DC that are efficient in priming and maturation of melanoma antigen-specific CTL. [source] Qualitative difference between the cytotoxic T,lymphocyte responses to melanocyte antigens in melanoma and vitiligoEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2005Belinda Palermo Abstract Vitiligo is a skin disorder characterized by depigmented macules secondary to melanocyte loss. An unusual facet is its relation to melanoma: Cytotoxic T,lymphocytes directed to melanocyte antigens are found in both conditions and imply a breakdown of tolerance, yet the resulting immune reaction is the opposite. The mechanisms at the basis of these opposite effects are not known. Here, we performed a direct comparison of whole melanocyte-specific T,cell populations in the two diseases. We demonstrate that neither precursor frequencies of Melan-A/MART-1-specific T,lymphocytes nor their status of activation differ significantly. However, by using a tetramer-based T,cell receptor down-regulation assay, we documented a higher affinity of vitiligo T,cells. We calculated that the peptide concentration required for 50% of maximal receptor down-regulation differed by 6.5-fold between the two diseases. Moreover, only vitiligo T,cells were capable of efficient receptor down-regulation and IFN-, production in response to HLA-matched melanoma cells, suggesting that this difference in receptor affinity is physiologically relevant. The differences in receptor affinity and tumor reactivity were confirmed by analyzing Melan-A/MART-1-specific clones established from the two diseases. Our results suggest that the quality, and not the quantity, of the melanocyte-specific cytotoxic responses differs between the two pathologies. [source] Cross-presentation of a human tumor antigen delivered to dendritic cells by HSV VP22-mediated protein translocationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2004Arvind Chhabra Abstract Dendritic cells (DC) capture antigens from apoptotic and/or necrotic tumor cells and cross-present them to T,cells, and various ways of delivering tumor antigens to DC in vitro and in vivo are being pursued. Since fusions of antigenic proteins with the HSV integument protein VP22 are capable of intercellular trafficking, this approach has been exploited for delivery of antigens to antigen-presenting cells. Adenoviral vectors were used to express the tumor-associated-but-self-antigen MART-1 fused to HSV VP22 in MART-1-negative A375 melanoma cells and in DC. When expressed in A375 cells and allowed to spread to DC across a transwell barrier, the VP22-MART-1 fusion protein localized to both early and late endosomal structures of the DC. The DC loaded with the VP22-MART-1 fusion by intercellular trafficking efficiently presented the MART-127,35 epitope to MART-127,35 -specific CTL. Furthermore, transloaded DC were capable of expanding the population of MART-127,35 -specific CTL. Thus, a tumor antigen acquired by intercellular trafficking can be cross-presented by DC. This experimental approach should therefore be useful not only for studying the mechanism of cross-presentation but also for vaccine development. [source] Adoptive transfer of an anti-MART-127,35 -specific CD8+ T,cell clone leads to immunoselection of human melanoma antigen-loss variants in SCID miceEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2003Francesco Lozupone Abstract The identification of appropriate mouse models could be useful in carefully evaluating the actual role of the in vivo development of antigen-loss variants during antigen-specific vaccine therapy of human tumors. In this study we investigated the level of efficacy of a MART-1/Melan-A-specific CD8+ T,cell clone against its autologous melanoma in a severe combined immunodeficiency (SCID) mouse model, in which the tumor cells expressed in vivo heterogeneous and suboptimal levels of MART-1. The subcutaneous co-injection of the MART-1/Melan-A-reactive T,cell clone A42 with MART-1/Melan-A+ autologous human melanoma cells into SCID mice caused a total inhibition of tumor growth. However, the systemic treatment with A42 clone lymphocytes resulted inonly 50,60% inhibition of tumor growth, although the T,cell clone targeted the tumors and the MART-1+ cells virtually disappeared from the tumors. This study suggests that an immunotherapybased on the expansion of an antigen-specific T,cell clone generated in vitro is highly efficient in abolishing tumor growth when the target antigen is fully expressed, but leads to in vivoimmunoselection of antigen-loss variants in the presence of suboptimal levels of antigen expression. Furthermore, this work shows that human tumors/SCID mouse models may be useful in evaluating thein vivo efficacy of adoptive immunotherapies. [source] Prostaglandin D2 production in FM55 melanoma cells is regulated by ,-melanocyte-stimulating hormone and is not related to melanin productionEXPERIMENTAL DERMATOLOGY, Issue 8 2010Mojgan Masoodi Please cite this paper as: Prostaglandin D2 production in FM55 melanoma cells is regulated by ,-melanocyte-stimulating hormone and is not related to melanin production. Experimental Dermatology 2010; 19: 751,753. Abstract:, This study shows that prostaglandins in human FM55 melanoma cells and epidermal melanocytes are produced by COX-1. Prostaglandin production in FM55 melanoma cells was unrelated to that of melanin suggesting that the two processes can occur independently. ,-Melanocyte-stimulating hormone, which had no effect on melanin production in FM55 cells, stimulated PGD2 production in these cells without affecting PGE2. While cAMP pathways may be involved in regulating PGD2 production, our results suggest that ,-MSH acts independently of cAMP, possibly by regulating the activity of lipocalin-type PGD synthase. This ,-MSH-mediated effect may be associated with its role as an immune modulator. [source] Efficient and selective tumor cell lysis and induction of apoptosis in melanoma cells by a conditional replication-competent CD95L adenovirusEXPERIMENTAL DERMATOLOGY, Issue 8 2010Lothar F. Fecker Please cite this paper as: Efficient and selective tumor cell lysis and induction of apoptosis in melanoma cells by a conditional replication-competent CD95L adenovirus. Experimental Dermatology 2010; 19: e56,e66. Abstract:, The high mortality of melanoma demands the development of new strategies, and gene therapy may be considered provided improvements in efficacy and selectivity. Overexpression of the death ligand CD95L/FasL has been shown in previous studies as highly effective for apoptosis induction in melanoma cells. For efficient and selective targeting of melanoma, a conditional replication-competent adenoviral vector was constructed (Ad5-FFE-02), which drives CD95L expression by a tetracycline-inducible promoter. For restricting its replication to melanoma cells, the adenoviral E1A gene is controlled by a tyrosinase-derived promoter. Furthermore, adenoviral E1B was deleted and a mutated E1A was used to preferentially support replication in tumor cells. Proving its high selectivity and efficiency, strong expression of E1A and doxycycline-dependent induction of CD95L were characteristic for tyrosinase-positive melanoma cells after Ad5-FFE-02 transduction, whereas absent in non-melanoma cell lines. Importantly, Ad5-FFE-02-mediated cell lysis was restricted to melanoma cells, and induction of apoptosis was found only in tyrosinase and CD95 expressing cells. Finally, the combination of adenoviral replication and CD95L-mediated apoptosis resulted in an enhanced repression of melanoma cell growth. This new adenoviral vector may provide a basis for an efficient targeting of melanoma. [source] Why do melanomas get so dark?EXPERIMENTAL DERMATOLOGY, Issue 11 2009Rossitza Lazova Abstract:, Cutaneous malignant melanomas often exhibit pigmented regions that are darker than the surrounding skin. While melanoma cells are the original source of the melanin, keratinocytes and melanophages also contribute to the tumor colour because they contain melanin obtained from melanoma cells. However, little is known of the origin of darkly pigmented melanoma cells or of the molecular pathways regulating their melanin production. Here we discuss observations that dark melanoma cells emerge from within populations of melanoma in situ and that, in addition to producing abundant dark pigment, they appear to be undergoing autophagy. Moreover, autophagy appears to be a common trait of invasive melanoma cells in the dermis. The underlying cause of this phenomenon may stem from aberrant production of glycosylation structures known as ,1,6-branched oligosaccharides. Our studies of dark cutaneous melanomas were prompted by analyses of experimental mouse macrophage-melanoma hybrids fused in the laboratory. Like melanoma cells in cutaneous malignant melanoma, experimental hybrids also displayed abundant dark pigment and autophagy, and had high levels of ,1,6-branched oligosaccharides. Whether or not darkly pigmented malignant melanoma cells originate from fusion with macrophages in vivo remains to be determined. In any event, pigmentation in melanoma, long considered as a secondary aspect of the malignancy, may be a visible warning that the cells have gained competence for invasion and metastasis. [source] Antimelanogenesis effect of Tunisian herb Thymelaea hirsuta extract on B16 murine melanoma cellsEXPERIMENTAL DERMATOLOGY, Issue 12 2007Mitsuko Kawano Abstract:, Skin pigmentation is the result of melanogenesis that occurs in melanocytes and/or melanoma cells. Although melanogenesis is necessary for the prevention of DNA damage and cancer caused by UV irradiation, excessive accumulation of melanin can also cause melanoma. Thus, we focused on the antimelanogenesis effect of an extract from Thymelaea hirsuta, a Tunisian herb. Murine melanoma B16 cells were treated with T. hirsuta extract, and then cell viability and synthesized melanin content were measured. We found that the T. hirsuta extract decreased the synthesized melanin content in B16 cells without cytotoxicity. Tyrosinase is a key enzyme of melanogenesis and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation is known to be related to melanogenesis inhibition. To clarify its mechanism, we also determined ERK1/2 phosphorylation and tyrosinase expression level. ERK1/2 was immediately phosphorylated in cells just after treatment with the extract. The tyrosinase expression was inhibited after 24 h of stimulation with the extract. The T. hirsuta extract was fractionated, and we found that one fraction considerably decreased the melanin synthesis in B16 cells and that this fraction contains daphnanes as the main component. This indicates that our findings might be attributable to daphnanes. [source] Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma modelEXPERIMENTAL DERMATOLOGY, Issue 11 2006Lina Elzaouk Abstract:, Mesenchymal stem cells (MSCs) represent a new tool for delivery of therapeutic agents to tumor cells. In this study, we have evaluated the anti-tumor activity of human MSCs stably transduced with a retroviral vector expressing the cytokine interleukin-12 (IL-12) in a mouse melanoma model. Application of MSC(IL-12) but not control MSCs strongly reduced the formation of lung metastases of B16F10 melanoma cells. The activity of the MSC(IL-12) cells was dependent on the presence of natural killer (NK) cells in this experimental setting. Further, MSC(IL-12) cells elicited a pronounced retardation of tumor growth and led to prolonged survival when injected into established subcutaneous melanoma in a therapeutic regimen. The therapeutic effect of the MSC(IL-12) was in part mediated by CD8+ T cells, while NK cells and CD4+ T cells appeared to play a minor role. The anti-tumor effect of MSC(IL-12) cells was of similar efficiency as observed for application of naked plasmid DNA encoding IL-12. The presented data demonstrate that these two different strategies can induce a similar therapeutic anti-tumor efficacy in the mouse melanoma tumor model. [source] Regulation of MC1R signalling by G-protein-coupled receptor kinasesEXPERIMENTAL DERMATOLOGY, Issue 9 2004J. C. García-Borrón The melanocortin 1 receptor (MC1R) is a key regulator of melanocyte proliferation and differentiation and a major determinant of human skin phototype and skin cancer risk. Although the regulation of MC1R gene expression is fairly well understood, little is known about regulatory mechanisms acting at the protein level. In particular, no information is available on homologous desensitization of MC1R signalling. We studied MC1R and Mc1r desensitization and found that: 1) MC1R and Mc1r in melanoma cells undergo homologous desensitization, demonstrated by decreases in cAMP contents upon continuous exposure to agonists, 2) desensitization is not dependent on PKA, PKC, calcium mobilization or MAPKs but is agonist dose dependent, suggesting a role of receptor occupancy, 3) melanoma cells express two members of the GRK family of serine/threonine kinases, GRK2 and GRK6, 4. These kinases are expressed in normal melanocytes, 5) in cotransfection experiments performed with HEK 293T cells, GRK2 strongly impairs agonist-dependent signalling by MC1R or Mc1r, 6) expression of a dominant negative GRK2 mutant in melanoma cells increases their cAMP response to MC1R agonists, 7) cotransfection of HEK 293T cells with GRK6 and MC1R inhibits both basal and agonist-dependent signalling, and 8) cAMP production in agonist-stimulated melanoma cells is strongly impaired by enrichment with GRK6 following stable transfection. Therefore, GRK2 and GRK6 are key regulators of MC1R signalling and may be important determinants of normal and pathological skin pigmentation. [source] Antioxidant and anti-inflammatory activities of melanocortin peptidesEXPERIMENTAL DERMATOLOGY, Issue 9 2004J. W. Haycock ,-Melanocyte-stimulating hormone (,-MSH) has previously been identified as a potent anti-inflammatory agent in various tissues including the skin. It operates by binding to the melanocortin-1 receptor (MC-1R) which results in the elevation of cyclic AMP. ,-MSH opposes the action of several proinflammatory cytokines including tumour necrosis factor-, (TNF-,). We have shown that ,-MSH can inhibit TNF-,-stimulated activation of nuclear factor-,B (NF-,B) in human cultured melanocytes, melanoma cells, keratinocytes, fibroblasts, Schwann cells and olfactory ensheathing cells. It also inhibits TNF-,-stimulated upregulation of intercellular adhesion molecule-1 (ICAM-1) in many of these cells and can inhibit peroxide-stimulated activation of glutathione peroxidase, suggesting an antioxidant role. ,-MSH is also able to stimulate intracellular calcium release in keratinocytes and fibroblasts (which do not readily show detectible cyclic AMP elevation) but only in the presence of PIA (an adenosine agonist). The carboxyl terminal tripeptides KPV/KP-D-V are reported to be the minimal sequences necessary to convey anti-inflammatory potential, but evidence on how they act is not fully known. Stable transfection of Chinese hamster ovary cells with MC-1R suggests that the KPV peptides operate by this receptor, at least by elevating intracellular calcium. Elevation of cyclic AMP by these tripeptides has not been detected in any cell type studied; however, calcium elevation can inhibit TNF-,-stimulated NF-,B activity (as for cyclic AMP). In conclusion, the MSH peptides convey anti-inflammatory and antioxidant activity in many cell types in skin and nerve, by counteracting proinflammatory cytokine signalling. The KPV peptides appear to act functionally via the MC-1R and can also elevate intracellular calcium. [source] Evaluation of combined gene regulatory elements for transcriptional targeting of suicide gene expression to malignant melanomaEXPERIMENTAL DERMATOLOGY, Issue 6 2003Heike Rothfels Abstract:, Selective killing of tumors can be achieved by targeting the transcription of suicide genes via specific DNA control elements to malignant cells. Three different enhancer-promoter systems were constructed and evaluated for their capability to direct gene expression to melanoma. Two tissue-specific (tyrosinase and MIA) promoters and one weak viral promoter were fused to multiple tandem copies of a melanocyte-specific enhancer element. Reporter gene assays revealed a maximum increase in transcription by combining each promoter with 3,4 copies of the enhancer and demonstrated that all enhancer-promoter combinations exhibited tissue-specific activity. Though this activity was still significantly less than that of the strong but unspecific cytomegalo virus (CMV) promoter. In contrast, when these combinations were employed to drive the expression of two suicide genes, encoding the diphtheria toxin A chain (DT-A) and the prodrug-activating herpes simplex virus thymidine kinase (TK), respectively, only those constructs in which transcription was under the control of tissue-specific promoter elements mediated selective killing of melanoma cells. This killing was in the range of cell death induced by CMV promoter activity. Our data indicate that the enhancer/tyrosinase and enhancer/MIA promoter constructs but not the viral promoter constructs can provide a valuable tool for selective suicide gene expression in melanoma. [source] CD44 variant isoform v10 is expressed on tumor-infiltrating lymphocytes and mediates hyaluronan-independent heterotypic cell,cell adhesion to melanoma cellsEXPERIMENTAL DERMATOLOGY, Issue 2 2003T. K. Weimann Abstract: CD44 is a family of cell-surface receptors on human lymphocytes that act as co-stimulatory molecules leading to the induction of effector functions in T cells. We have analyzed primary cutaneous malignant melanomas with clinical and histologic signs of tumor regression using immunohistochemistry and observed the predominant expression of the CD44 variant isoform v10 on CD3 CD4/CD8 co-expressing tumor-infiltrating lymphocytes (TIL). We further analyzed the role of CD44v10 in adhesion of lymphocytes to human melanoma cells. In contrast to CD44, lymphatic cells, CD44v10+ lymphatic cells strongly bound to cultured human melanoma cells and to frozen tissue samples of melanomas. Antibody blocking studies revealed a hyaluronan-, integrin-, and selectin-independent pathway of adhesion. Furthermore, CD44v10+ lymphatic cells exhibited significantly higher invasiveness in three-dimensional collagen matrices as compared with CD44H+ and CD44-negative lymphocytes. These results indicate that expression of CD44v10 on TIL may mediate adhesion to melanoma cells and result in gain of novel invasive properties. [source] Thrombin-mediated impairment of fibroblast growth factor-2 activityFEBS JOURNAL, Issue 12 2009Pierangela Totta Thrombin generation increases in several pathological conditions, including cancer, thromboembolism, diabetes and myeloproliferative syndromes. During tumor development, thrombin levels increase along with several other molecules, including cytokines and angiogenic factors. Under such conditions, it is reasonable to predict that thrombin may recognize new low-affinity substrates that usually are not recognized under low-expression levels conditions. In the present study, we hypothesized that fibroblast growth factor (FGF)-2 may be cleaved by thrombin and that such action may lead to an impairment of its biological activity. The evidence collected in the present study indicates that FGF-2-induced proliferation and chemotaxis/invasion of SK-MEL-110 human melanoma cells were significantly reduced when FGF-2 was pre-incubated with active thrombin. The inhibition of proliferation was not influenced by heparin. Phe-Pro-Arg-chloromethyl ketone, a specific inhibitor of the enzymatic activity of thrombin, abolished the thrombin-induced observed effects. Accordingly, both FGF-2-binding to cell membranes as well as FGF-2-induced extracellular signal-regulated kinase phosphorylation were decreased in the presence of thrombin. Finally, HPLC analyses demonstrated that FGF-2 is cleaved by thrombin at the peptide bond between residues Arg42 and Ile43 of the mature human FGF-2 sequence. The apparent kcat/Km of FGF-2 hydrolysis was 1.1 × 104 m,1·s,1, which is comparable to other known low-affinity thrombin substrates. Taken together, these results demonstrate that thrombin digests FGF-2 at the site Arg42-Ile43 and impairs FGF-2 activity in vitro, indicating that FGF-2 is a novel thrombin substrate. [source] Loss-of-function variants of the human melanocortin-1 receptor gene in melanoma cells define structural determinants of receptor functionFEBS JOURNAL, Issue 24 2002Jesús Sánchez Más The ,-melanocyte-stimulating hormone (,MSH) receptor (MC1R) is a major determinant of mammalian skin and hair pigmentation. Binding of ,MSH to MC1R in human melanocytes stimulates cell proliferation and synthesis of photoprotective eumelanin pigments. Certain MC1R alleles have been associated with increased risk of melanoma. This can be theoretically considered on two grounds. First, gain-of-function mutations may stimulate proliferation, thus promoting dysplastic lesions. Second, and opposite, loss-of-function mutations may decrease eumelanin contents, and impair protection against the carcinogenic effects of UV light, thus predisposing to skin cancers. To test these possibilities, we sequenced the MC1R gene from seven human melanoma cell (HMC) lines and three giant congenital nevus cell (GCNC) cultures. Four HMC lines and two GCNC cultures contained MC1R allelic variants. These were the known loss-of-function Arg142His and Arg151Cys alleles and a new variant, Leu93Arg. Moreover, impaired response to a superpotent ,MSH analog was demonstrated for the cell line carrying the Leu93Arg allele and for a HMC line homozygous for wild-type MC1R. Functional analysis in heterologous cells stably or transiently expressing this variant demonstrated that Leu93Arg is a loss-of-function mutation abolishing agonist binding. These results, together with site-directed mutagenesis of the vicinal Glu94, demonstrate that the MC1R second transmembrane fragment is critical for agonist binding and maintenance of a resting conformation, whereas the second intracellular loop is essential for coupling to the cAMP system. Therefore, loss-of-function, but not activating MC1R mutations are common in HMC. Their study provides important clues to understand MC1R structure-function relationships. [source] Echistatin inhibits pp125FAK autophosphorylation, paxillin phosphorylation and pp125FAK,paxillin interaction in fibronectin-adherent melanoma cellsFEBS JOURNAL, Issue 16 2000Rossella Della Morte Echistatin, a snake-venom RGD-containing protein, was previously shown to disrupt cell-matrix adhesion by a mechanism that involves the reduction of pp125FAK tyrosine phosphorylation levels. The aim of this study was to establish the sequence of events downstream pp125FAK dephosphorylation that could be responsible for echistatin-induced disassembly of actin cytoskeleton and focal adhesions in fibronectin-adherent B16-BL6 melanoma cells. The results obtained show that echistatin induces a decrease of both autophosphorylation and kinase activity of pp125FAK. One hour of cell exposure to echistatin caused a 39% decrease of pp125FAK Tyr397 phosphorylation and a 31% reduction of pp125FAK autophosphorylation activity as measured by immune-complex kinase assay. Furthermore, 1 h of cell treatment by echistatin produced a 63% decrease of paxillin phosphorylation, as well as a reduction in the amount of paxillin bound to pp125FAK. Immunofluorescence analysis of echistatin treated cells showed the concomitant disappearance of both paxillin and pp125FAK from focal adhesions. The reduction of paxillin phosphorylation may represent a critical step in the pathway by which disintegrins exert their biological activity, including the inhibition of experimental metastasis in vivo. [source] |