Home About us Contact | |||
MEK Inhibitor (mek + inhibitor)
Kinds of MEK Inhibitor Terms modified by MEK Inhibitor Selected AbstractsAcute activation of Erk1/Erk2 and protein kinase B/akt proceed by independent pathways in multiple cell typesFEBS JOURNAL, Issue 17 2005Doris Chiu We used two inhibitors of the signaling enzyme phosphatidylinositol 3-kinase (PtdIns3K), wortmannin and LY294002, to evaluate the potential involvement of PtdIns3K in the activation of the MAP kinases (MAPK), Erk1 and Erk2. In dose,response studies carried out on six different cell lines and a primary cell culture, we analyzed the ability of the inhibitors to block phosphorylation of protein kinase B/akt (PKB/akt) at Ser473 as a measure of PtdIns3K activity, or the phosphorylation of Erk1/2 at activating Thr/Tyr sites as a measure of the extent of activation of MAPK/Erk kinase (MEK/Erk). In three different hemopoietic cell lines stimulated with cytokines, and in HEK293 cells, stimulated with serum, either wortmannin or LY294002, but never both, could partially block phosphorylation of Erks. The same observations were made in a B-cell line and in primary fibroblasts. In only one cell type, the A20 B cells, was there a closer correlation between the PtdIns3K inhibition by both inhibitors, and their corresponding effects on Erk phosphorylation. However, this stands out as an exception that gives clues to the mechanism by which cross-talk might occur. In all other cells, acute activation of the pathway leading to Erk phosphorylation could proceed independently of PtdIns3K activation. In a biological assay comparing these two pathways, the ability of LY294002 and the MEK inhibitor, U0126, to induce apoptosis were tested. Whereas LY294002 caused death of cytokine-dependent hemopoietic cells, U0126 had little effect, but both inhibitors together had a synergistic effect. The data show that these two pathways are regulating very different downstream events involved in cell survival. [source] Inhibition of angiotensin II- and endothelin-1-stimulated proliferation by selective MEK inhibitor in cultured rabbit gingival fibroblasts,FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2005Masami Ohsawa Abstract We investigated the implication of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in the proliferation stimulated by angiotensin II (Ang II) and endothelin-1 (ET-1) in cultured rabbit gingival fibroblasts (CRGF). Ang II stimulated activation of ERK1/2 and the activation was inhibited by CV-11974, an AT1 antagonist, and saralasin, an AT1/AT2 antagonist, but not by PD123,319, an AT2 antagonist in the CRGF. Ang II-stimulated proliferation was inhibited by PD98059 or U0126, selective MEK inhibitors. Furthermore, ET-1 stimulated proliferation via G-protein-coupled ETA receptors, which were identified by Western blot analysis of membrane protein from the CRGF. ET-1 also stimulated activation of ERK1/2 and the activation was inhibited by BQ-123, an ETA inhibitor, and TAK044, an ETA/ETB inhibitor, but not by BQ-788, an ETB inhibitor. ET-1-stimulated proliferation was inhibited by PD98059 or U0126. These findings suggest that ERK1/2 play a role in the signaling process leading to proliferation stimulated by Ang II and ET-1 via G-protein-coupled receptors, AT1 and ETA in CRGF. [source] Induction of Transcriptional Activity of the Cyclic Adenosine Monophosphate Response Element Binding Protein by Parathyroid Hormone and Epidermal Growth Factor in Osteoblastic Cells,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2002John T. Swarthout Abstract Previously, we have shown that parathyroid hormone (PTH) transactivation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) requires both serine 129 (S129) and serine 133 (S133) in rat osteosarcoma cells UMR 106-01 (UMR) cells. Furthermore, although protein kinase A (PKA) is responsible for phosphorylation at S133, glycogen synthase kinase 3, (GSK-3,) activity is required and may be responsible for phosphorylation of CREB at S129. Here, we show, using the GAL4-CREB reporter system, that epidermal growth factor (EGF) can transactivate CREB in UMR cells in addition to PTH. Additionally, treatment of UMR cells with both PTH and EGF results in greater than additive transactivation of CREB. Furthermore, using mutational analysis we show that S129 and S133 are required for EGF-induced transcriptional activity. EGF activates members of the MAPK family including p38 and extracellular signal,activated kinases (ERKs), and treatment of UMR cells with either the p38 inhibitor (SB203580) or the MEK inhibitor (PD98059) prevents phosphorylation of CREB at S133 by EGF but not by PTH. Treatment of cells with either SB203580 or PD98059 alone or together significantly inhibits transactivation of CREB by EGF but not by PTH, indicating that EGF regulates CREB phosphorylation and transactivation through p38 and ERKs and PTH does not. Finally, the greater than additive transactivation of CREB by PTH and EGF is significantly inhibited by the PKA inhibitor H-89 or by cotreatment with SB203580 and PD98059. Thus, several different signaling pathways in osteoblastic cells can converge on and regulate CREB activity. This suggests, in vivo, that circulating agents such as PTH and EGF are acting in concert to exert their effects. [source] Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Mi Jeong Lee Abstract Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests a pivotal role of mesenchymal stem cells (MSCs) or stromal cells in tumorigenesis. In the present study, we demonstrated that ascites from ovarian cancer patients and LPA increased migration of human MSCs. The migration of MSCs induced by LPA and malignant ascites was completely abrogated by pretreatment with Ki16425, an antagonist of LPA receptors, and by silencing of endogenous LPA1, but not LPA2, with small interference RNA, suggesting a key role of LPA played in the malignant ascites-induced migration. LPA induced activation of ERK through pertussis toxin-sensitive manner, and pretreatment of MSCs with U0126, a MEK inhibitor, or pertussis toxin attenuated the LPA-induced migration. Moreover, LPA induced activation of RhoA in MSCs, and pretreatment of the cells with Y27632, a Rho kinase inhibitor, markedly inhibited the LPA-induced migration. In addition, LPA and malignant ascites increased intracellular concentration of calcium in MSCs, and Ki16425 completely inhibited the elevation of intracellular calcium. These results suggest that LPA is a crucial component of the malignant ascites which induce the migration of MSCs and elevation of intracellular calcium. J. Cell. Biochem. 104: 499,510, 2008. © 2007 Wiley-Liss, Inc. [source] Role of MAPK phosphorylation in cytoprotection by pro-vitamin C against oxidative stress-induced injuries in cultured cardiomyoblasts and perfused rat heartJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2003Masahiro Eguchi Abstract The reactive oxygen species (ROS) are known to be generated upon post-ischemic reperfusion (I/R) of the heart, and to injure cardiac muscle cells. The hydrogen peroxide-induced mortality of rat cardiomyoblasts H2c9 was markedly inhibited by previous administration with auto-oxidation-resistant pro-vitamin C, the 2- O -phosphorylated derivative (Asc2P) of ascorbic acid (Asc). The cytoprotection was partially counteracted by an inhibitor of MAPK (mitogen-activated protein kinase) kinase (MEK) as shown by DNA strand cleavage assay and mitochondrial dehydrogenase assay. Immunostains indicated that phosphorylated MAPK increased in the hydrogen peroxide-treated cardiomyoblasts, and that this action was moderately inhibited by Asc2P and restored nearly to the initial, pretreatment level by combined administration of the MEK inhibitor and Asc2P. The I/R-induced cell injuries in perfused rat hearts as estimated by extracellular release of the cardiac enzyme CPK were inhibited by 2- O -,-glucosylascorbic acid (Asc2G) and Asc, whereas the observed cytoprotection for the cardiomyoblasts was partially counteracted by the MEK inhibitor. The increase in phosphorylated MAPK in I/R-operated hearts was moderately inhibited by pro-vitamin C, but restored nearly to the normal non-operated level by combined administration with the MEK inhibitor. This is in contrast to no alteration in levels of non-phosphorylated MAPK for all the cases examined as shown by Western blots, consistent with results of immunostains for the cardiomyoblasts. The inhibitory effect of the MEK inhibitor on MAPK phosphorylation was, therefore, suggested to counteract the cytoprotective effects of pro-vitamin C via a thorough interruption of the phosphorylated MAPK signaling pathway. This was not true of ROS-related events; the scavenging effects of Asc2G and Asc on hydroxyl radicals generated from I/R-operated heart were not affected by combined administration with the MEK inhibitor, as shown by the spin-trapping DMPO-based ESR method. J. Cell. Biochem. 90: 219,226, 2003. © 2003 Wiley-Liss, Inc. [source] High glucose increase cell cycle regulatory proteins level of mouse embryonic stem cells via PI3-K/Akt and MAPKs signal pathwaysJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006Yun Hee Kim This study examined the effects of high glucose on cell proliferation and its related signal pathways using mouse embryonic stem (ES) cells. Here, we showed that high glucose level significantly increased [3H]thymidine incorporation, BrdU incorporation, the number of cells, [3H]leucine, and [3H]proline incorporation in a time-(>3 hr) and dose-(>25 mM) dependent manner. Moreover, high glucose level increased the cellular reactive oxygen species (ROS), Akt, and mitogen-activated protein kinases (MAPKs) phosphorylation. Subsequently, these signaling molecules involved in high glucose-induced increase of [3H]thymidine incorporation. High glucose level also increased cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4 protein levels, which is cell cycle regulatory proteins acting in G1,S phase of cell cycle. Inhibition of phosphatidylinositol 3-kinase (PI3-K) (LY 294002: PI3-kinase inhibitor, 10,6 M), Akt (Akt inhibitor, 10,5 M), and p44/42 MAPKs (PD 98059: MEK inhibitor, 10,5 M) decreased these proteins. High glucose level phosphorylated the RB protein, which was decreased by inhibition of PI3-K and Akt. In conclusion, high glucose level stimulates mouse ES cell proliferation via the PI3-K/Akt and MAPKs pathways. J. Cell. Physiol. 209: 94,102, 2006. © 2006 Wiley-Liss, Inc. [source] Age-related differences in MAP kinase activity in VSMC in response to glucose or TNF-,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2003Muyao Li Aortic vascular smooth muscle cells (VSMC) were used to study the effect of age on responses to high glucose concentrations or the cytokine, tumor necrosis factor-alpha (TNF-,). Activator protein-1 (AP-1) binding to DNA increased more in VSMC from old versus young rats (P,<,0.02) and was related to increased expression of its components, c-Fos, Fra-1, and JunD. The relationship to upstream signals, i.e., activities of mitogen-activated protein kinases (MAPK), was studied using antibodies to total and phosphorylated forms of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK) and p38. High glucose and TNF-, increased ERK phosphorylation more in old (P,<,0.05); whereas only TNF-, induced JNK activation in young (P,<,0.04). PD98059, a MEK inhibitor, attenuated AP-1 activation, lowered c-Fos and Fra-1 protein levels and reduced cell number and cells positive for proliferating cell nuclear antigen in old. We concluded that age differentially influenced activation of signaling pathways in VSMC exposed to high glucose or TNF-,. This may contribute to the increased risk for vascular disease associated with aging and diabetes mellitus (DM). J. Cell. Physiol. 197: 418,425, 2003© 2003 Wiley-Liss, Inc. [source] ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced neurotoxicityJOURNAL OF NEUROCHEMISTRY, Issue 2 2010Kai He J. Neurochem. (2010) 114, 452,461. Abstract A zinc-induced signaling pathway leading to extracellular signal-regulated kinase 1/2 (ERK1/2) activation and subsequent neuronal death has been investigated. We find that an extracellular zinc application stimulates biphasic phosphorylation of ERK1/2 and p38 MAPK in rat cultured neurons. The activation of ERK1/2, but not p38, is responsible for zinc neurotoxicity as only U0126, a MEK inhibitor that blocks ERK1/2 phosphorylation, significantly protects cortical neurons from zinc exposure. Over-expression of a dominant negative Ras mutant blocks zinc-induced Elk1-dependent gene expression in neurons, indicating the involvement of Ras activation in the zinc pathway leading to ERK phosphorylation and Elk1 signaling. We also find that zinc treatment results in neuronal mitochondrial hyperpolarization. Importantly, both U0126 and bongkrekic acid, an inhibitor of the mitochondrial adenine nucleotide translocase, effectively reduce zinc-triggered mitochondrial changes. As bongkrekic acid also prevents zinc-triggered neuronal death but not ERK1/2 phosphorylation, activation of MAPK signaling precedes and is required for mitochondrial dysfunction and cell death. These results provide new insight on the mechanism of extracellular zinc-induced toxicity in which the regulation of mitochondrial function by the Ras/MEK/ERK pathway is closely associated with neuronal viability. [source] Role of phosphorylation of ERK in induction and maintenance of LTP of the C-fiber evoked field potentials in spinal dorsal hornJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2006Wen-Jun Xin Abstract Previous works have shown that activation of extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) pathway is essential for long-term potentiation (LTP) in hippocampus. In the present study, the role of the ERK/CREB pathway in LTP of C-fiber evoked field potentials in spinal dorsal horn, which is relevant to pathologic pain, was investigated in adult rats. Western blotting analysis showed that the protein level of phosphorylated ERK (p-ERK) in ipsilateral spinal dorsal horn was transiently increased after LTP induction, starting at 15 min and returning to control at 60 min after tetanic stimulation and that the protein level of p-CREB increased at 30 min, persisting for at least 3 hr after LTP induction. Double immunofluorescence staining showed that p-ERK and p-CREB were only located in neurons but not in glial cells in the spinal dorsal horn after LTP induction. More importantly, we found that spinal application of PD 98059 (100 ,M), a selective MEK inhibitor, at 30 min before tetanic stimulation blocked LTP induction and prevented the increase in p-ERK and p-CREB in spinal dorsal horn. When applied 15 min after LTP induction, PD98059 reversed established LTP. The drug, however, did not affect the spinal LTP, when applied at 30 min after LTP. Our results suggested that activation of ERK/CREB pathway in spinal dorsal neurons is necessary for induction and maintenance of long-term potentiation of the C-fiber evoked field potentials. © 2006 Wiley-Liss, Inc. [source] Role of Dopamine D1 Receptors and Extracellular Signal Regulated Kinase in the Motivational Properties of Acetaldehyde as Assessed by Place Preference ConditioningALCOHOLISM, Issue 4 2010Liliana Spina Background:, The role of dopamine D1 receptors and Extracellular signal Regulated Kinase (ERK) in the motivational properties of drugs can be studied by place-conditioning. Recent advances have shown that the motivational properties of ethanol, determined by place-conditioning, are mediated by its metabolic conversion into acetaldehyde. To date, the role of D1 receptors and ERK activation in acetaldehyde-elicited place preference has not been determined. The aim of this study was to assess the role of D1 receptors blockade and MEK inhibition in the acquisition of acetaldehyde-elicited conditioned place preference. Methods:, Male Sprague,Dawley rats were subjected to repeated pairings with 1 compartment of the conditioning apparatus immediately following acetaldehyde (20 mg/kg i.g.) or ethanol (1 g/kg i.g.) administration. The D1 receptor antagonist, SCH 39166 (50 ,g/kg s.c.), was administered 10 minutes before acetaldehyde or ethanol administration. In order to study the role of activated ERK in the acetaldehyde-elicited place preference, rats were administered the MEK inhibitor, PD98059 (1, 30, and 90 ,g i.c.v.), 10 or 30 minutes before acetaldehyde. To verify the specificity of these effects, we also studied whether PD98059 pretreatment could affect morphine (1 mg/kg s.c.)-elicited place preference. Results:, Both acetaldehyde and ethanol elicited significant place preferences and these were prevented by pretreatment with SCH 39166. In addition, pretreatment with PD98059, dose (30 and 90 but not 1 ,g i.c.v.) and time (10 but not 30 minutes before) dependently, prevented the acquisition of acetaldehyde- and significantly reduced the acquisition of morphine-elicited conditioned place preference. Conclusions:, These results confirm that acetaldehyde and ethanol elicit conditioned place preference and demonstrate that D1 receptors are critically involved in these effects. Furthermore, the finding that PD98059 prevents the acquisition of acetaldehyde-elicited conditioned place preference highlights the importance of the D1 receptor,ERK pathway in its motivational effects. [source] Enhancement of anchorage-independent growth of human pancreatic carcinoma MIA PaCa-2 cells by signaling from protein kinase C to mitogen-activated protein kinaseMOLECULAR CARCINOGENESIS, Issue 4 2002Keiko Ishino Abstract We found that 12- O -tetradecanoylphorbol-13-acetate (TPA) promoted anchorage-independent growth but did not affect anchorage-dependent growth of MIA PaCa-2 human pancreatic carcinoma cells. TPA markedly activated mitogen-activated protein kinase (MAPK)/extracellular signal,regulated kinase in an anchorage-independent manner. Two protein kinase C (PKC) isoforms, conventional PKC (cPKC) and novel PKC (nPKC), but not apical PKC, translocated from the cytosolic to the particulate fraction upon TPA treatment. To identify the PKC isoforms involved in the regulation of anchorage-independent growth, four PKC isoforms (,, ,, ,, and ,) were forced to be expressed in MIA PaCa-2 cells with an adenovirus vector. Overexpression of nPKC, or nPKC, activated MAPK and promoted anchorage-independent growth. Overexpression of cPKC, alone did not influence anchorage-independent growth but lowered the concentration of TPA that was required to enhance such growth. Expression of constitutively active MAPK kinase-1 (MEK1) also promoted anchorage-independent growth. Furthermore, PKC inhibitors or an MEK inhibitor completely suppressed both TPA-induced activation of MAPK and promotion of anchorage-independent growth, but a cPKC-selective inhibitor partially suppressed TPA-induced promotion of the growth. Based on these results, we suggest that MAPK activation, mediated by certain isoforms of PKC, plays a part in oncogenic growth of MIA PaCa-2 cells. In summary, our data indicated that specific inhibitors of the cPKC and nPKC signaling pathway might be selective anti-oncogenic growth agents for some types of human pancreatic cancer. © 2002 Wiley-Liss, Inc. [source] Activation of MAP Kinase in Lumbar Spinothalamic Cells Is Required for EjaculationTHE JOURNAL OF SEXUAL MEDICINE, Issue 7 2010Michael D. Staudt MSc ABSTRACT Introduction., Ejaculation is a reflex controlled by a spinal ejaculation generator located in the lumbosacral spinal cord responsible for the coordination of genital sensory with autonomic and motor outputs that regulate ejaculation. In the male rat, a population of lumbar spinothalamic cells (LSt cells) comprises an essential component of the spinal ejaculation generator. LSt cells are activated with ejaculation, but the nature of the signal transduction pathways involved in this activation is unknown. Moreover, it is unknown if LSt cell activation is required for expression of ejaculation. Aim., The current study tested the hypothesis that ejaculatory reflexes are triggered via activation of the mitogen-activated protein (MAP) kinase signaling pathway in the LSt cells. Methods., Expression of phosphorylated extracellular signal-related kinases 1 and 2 (pERK) was investigated following mating behavior, or following ejaculation induced by electrical stimulation of the dorsal penile nerve (DPN) in anesthetized, spinalized male rats. Next, the effects of intrathecal or intraspinal delivery of Mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor U0126 on DPN stimulation-induced ejaculation was examined. Main Outcome Measures., Expression of pERK in LSt cells and associated areas was analyzed. Electromyographic recordings of the bulbocavernosus muscle were recorded in anesthetized, spinalized rats. Results., Results indicate that the MAP kinase signaling pathway is activated in LSt cells following ejaculation in mating animals or induced by DPN stimulation in anesthetized, spinalized animals. Moreover, ERK activation in LSt cells is an essential trigger for ejaculation, as DPN stimulation-induced reflexes were absent following administration of MEK inhibitor in the L3-L4 spinal area. Conclusion., These data provide insight into the nature of the signal transduction pathways involved in the activation of ejaculation through LSt cells. The data demonstrate that ERK activation in LSt cells is essential for ejaculation and contribute to a more detailed understanding of the spinal generation of ejaculation. Staudt MD, de Oliveira CVR, Lehman MN, McKenna KE, and Coolen LM. Activation of MAP kinase in lumbar spinothalamic cells is required for ejaculation. J Sex Med 2010;7:2445,2457. [source] Deceleration of Regenerative Response Improves the Outcome of Rat with Massive HepatectomyAMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2010M. Ninomiya Small residual liver volume after massive hepatectomy or partial liver transplantation is a major cause of subsequent liver dysfunction. We hypothesize that the abrupt regenerative response of small remnant liver is responsible for subsequent deleterious outcome. To slow down the regenerative speed, NS-398 (ERK1/2 inhibitor) or PD98059 (selective MEK inhibitor) was administered after 70% or 90% partial hepatectomy (PH). The effects of regenerative speed on liver morphology, portal pressure and survival were assessed. In the 70% PH model, NS-398 treatment suppressed the abrupt replicative response of hepatocytes during the early phase of regeneration, although liver volume on day 7 was not significantly different from that of the control group. Immunohistochemical analysis for CD31 (for sinusoids) and AGp110 (for bile canaliculi) revealed that lobular architectural disturbance was alleviated by NS-398 treatment. In the 90% PH model, administration of NS-398 or PD98059, but not hepatocyte growth factor, significantly enhanced survival. The abrupt regenerative response of small remnant liver is suggested to be responsible for intensive lobular derangement and subsequent liver dysfunction. The suppression of MEK/ERK signaling pathway during the early phase after hepatectomy makes the regenerative response linear, and improves the prognosis for animals bearing a small remnant liver. [source] Restoration of PTEN expression alters the sensitivity of prostate cancer cells to EGFR inhibitors,THE PROSTATE, Issue 9 2008Z. Wu Abstract Introduction Prostate cancer (CaP) progression from an androgen-dependent to an androgen-independent state is associated with overexpression of EGFR family members or activation of their downstream signaling pathways, such as PI3K-Akt and MAPK. Although there are data implicating PI3K-Akt or MAPK pathway activation with resistance to EGFR inhibitors in CaP, the potential cross-talk between these pathways in response to EGFR or MAPK inhibitors remains to be examined. Methods Cross-talk between PTEN and MAPK signaling and its effects on CaP cell sensitivity to EGFR or MAPK inhibitors were examined in a PTEN-null C4-2 CaP cell, pTetOn PTEN C4-2, where PTEN expression was restored conditionally. Results Expression of PTEN in C4-2 cells exposed to EGF or serum was associated with increased phospho-ERK levels compared to cells without PTEN expression. Similar hypersensitivity of MAPK signaling was observed when cells were treated with a PI3K inhibitor LY294002. This enhanced sensitivity of MAPK signaling in PTEN-expressing cells was associated with a growth stimulatory effect in response to EGF. Furthermore, EGFR inhibitors gefitinib and lapatinib abrogated hypersensitivity of MAPK signaling and cooperated with PTEN expression to inhibit cell growth in both monolayer and anchorage-independent conditions. Similar cooperative growth inhibition was observed when cells were treated with the MEK inhibitor, CI1040, in combination with PTEN expression suggesting that inhibition of MAPK signaling could mediate the cooperation of EGFR inhibitors with PTEN expression. Conclusions Our results suggest that signaling cross-talk between the PI3K-Akt and MAPK pathways occurs in CaP cells, highlighting the potential benefit of targeting both the PI3K-Akt and MAPK pathways in CaP treatment. Prostate 68:935,944, 2008. © 2008 Wiley-Liss, Inc. [source] Simultaneous signalling through c-mpl, c-kit and CXCR4 enhances the proliferation and differentiation of human megakaryocyte progenitors: possible roles of the PI3-K, PKC and MAPK pathwaysBRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2001Hitoshi Minamiguchi We assessed the effect of signalling through CXCR4 on the proliferation and differentiation of human megakaryocytic progenitor cells (CFU-Meg) in the presence or absence of stem cell factor (SCF) and/or thrombopoietin (TPO), using peripheral blood-derived CD34+IL-6R, cells as a target. TPO alone induced a significant number of CFU-Meg colonies. Although stromal cell-derived factor-1 (SDF-1) or SCF alone did not support CFU-Meg colony formation, these factors had a synergistic effect on CFU-Meg colony formation in the presence of TPO. The combination of SDF-1, SCF and TPO induced twice as many CFU-Meg colonies as TPO alone. To investigate the mechanism of this synergistic action, we examined the effects of various protein kinase inhibitors on CFU-Meg colony formation. LY294002 and GF109203X (inhibitors of PI3-K and PKC respectively) completely or partially inhibited this synergistic action. In contrast, a MEK inhibitor (PD98059) did not inhibit CFU-Meg colony formation. It significantly increased the higher ploidy classes (16N to 64N) of megakaryocytes supported by TPO, TPO + SCF, TPO + SDF-1, and TPO + SCF + SDF-1, whereas it abolished the effect of SDF-1 on the increase of higher ploidy classes of megakaryocytes supported by TPO. These results suggest that MAPK may negatively or positively regulate the nuclear maturation of megakaryocytes, known as endomitosis. In the presence of PD98059, proplatelet formation (PPF) was significantly augmented, suggesting that the MAPK pathway may also inhibit the initiation of PPF. In conclusion, simultaneous activation of three signals through c-mpl, c-kit and CXCR4 can induce the in vitro proliferation and differentiation of CFU-Meg, and SDF-1 is a potentiator of human megakaryocytopoiesis. [source] Inhibition of angiotensin II- and endothelin-1-stimulated proliferation by selective MEK inhibitor in cultured rabbit gingival fibroblasts,FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2005Masami Ohsawa Abstract We investigated the implication of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in the proliferation stimulated by angiotensin II (Ang II) and endothelin-1 (ET-1) in cultured rabbit gingival fibroblasts (CRGF). Ang II stimulated activation of ERK1/2 and the activation was inhibited by CV-11974, an AT1 antagonist, and saralasin, an AT1/AT2 antagonist, but not by PD123,319, an AT2 antagonist in the CRGF. Ang II-stimulated proliferation was inhibited by PD98059 or U0126, selective MEK inhibitors. Furthermore, ET-1 stimulated proliferation via G-protein-coupled ETA receptors, which were identified by Western blot analysis of membrane protein from the CRGF. ET-1 also stimulated activation of ERK1/2 and the activation was inhibited by BQ-123, an ETA inhibitor, and TAK044, an ETA/ETB inhibitor, but not by BQ-788, an ETB inhibitor. ET-1-stimulated proliferation was inhibited by PD98059 or U0126. These findings suggest that ERK1/2 play a role in the signaling process leading to proliferation stimulated by Ang II and ET-1 via G-protein-coupled receptors, AT1 and ETA in CRGF. [source] Sustained activation of M-Ras induced by nerve growth factor is essential for neuronal differentiation of PC12 cellsGENES TO CELLS, Issue 9 2006Peng Sun Neuronal differentiation in PC12 cells induced by nerve growth factor (NGF) requires sustained activation of ERK/MAP kinase pathway (Raf,MEK,ERK cascade). Although classical Ras (H-Ras, K-Ras, and N-Ras) activated by NGF signaling induces activation of ERK pathway, the activation is transient and not sufficient for PC12 cell differentiation. Instead, it has been widely accepted that NGF signaling-mediated Rap1 activation causes sustained activation of ERK pathway. There has been no direct evidence, however, that Rap1 participates in neuronal differentiation. Here we show that NGF signaling induces sustained activation of M-Ras and subsequent sustained activation of ERK pathway and the transcription factor CREB leading to PC12 cell differentiation. Exogenously expressed constitutively active mutant of M-Ras caused neurite outgrowth in PC12 cells and activating phosphorylation of ERK, whereas activated Rap1 did not. Knockdown of endogenous M-Ras by small interfering RNAs as well as the expression of a dominant,negative mutant of M-Ras interfered with NGF-induced neuritogenesis. Since MEK inhibitors prevented M-Ras-induced neurite outgrowth, ERK pathway participates in this differentiation pathway. Furthermore, M-Ras brought about ERK pathway-mediated activating phosphorylation of CREB and the CREB-mediated transcription. In addition, a dominant,negative mutant of CREB inhibited M-Ras-induced neuritogenesis. Taken together, NGF-induced PC12 cell differentiation requires M-Ras,ERK pathway-mediated activation of CREB. M-Ras was predominantly expressed in the hippocampus and cerebellum of mouse brain and in the gray matter of the spinal cord. All these properties of M-Ras were apparently indistinguishable from those of H-Ras. However, NGF stimulation caused transient activation of classical Ras proteins but sustained activation of M-Ras as well as sustained activating phosphorylation of ERK and CREB. Therefore, M-Ras is essential for neuronal differentiation in PC12 cells by inducing sustained activation of ERK pathway. [source] Activation of extracellular signal-regulated kinases potentiates hemin toxicity in astrocyte culturesJOURNAL OF NEUROCHEMISTRY, Issue 3 2001Raymond F. Regan Hemin is present in intracranial hematomas in high micromolar concentrations and is a potent, lipophilic oxidant. Growing evidence suggests that heme-mediated injury may contribute to the pathogenesis of CNS hemorrhage. Extracellular signal-regulated kinases (ERKs) are activated by oxidants in some cell types, and may alter cellular vulnerability to oxidative stress. In this study, the effect of hemin on ERK activation was investigated in cultured murine cortical astrocytes, and the consequence of this activation on cell viability was quantified. Hemin was rapidly taken up by astrocytes, and generated reactive oxygen species (ROS) within 30 min. Increased immunoreactivity of dually phosphorylated ERK1/2 was observed in hemin-treated cultures at 30,120 min, without change in total ERK. Surprisingly, ERK activation was not attenuated by concomitant treatment with antioxidants (U74500A or 1,10-phenanthroline) at concentrations that blocked ROS generation. Cell death commenced after 2 h of hemin exposure and was reduced by antioxidants and by the caspase inhibitor Z-VAD-FMK. Cytotoxicity was also attenuated by MEK inhibition with PD98059 or U0126 at concentrations that were sufficient to prevent ERK activation. Whereas the effect of Z-VAD-FMK on cell survival was transient, the effect of MEK inhibitors was long-lasting. MEK inhibitors had no effect on cellular hemin uptake or subsequent ROS generation. The present results suggest that hemin activates ERK in astrocytes via a mechanism that is independent of ROS generation. This activation sensitizes astrocytes to hemin-mediated oxidative injury. [source] Effect of inhibitors of mitogen-activated protein kinase kinase on ,1B -adrenoceptor phosphorylationAUTONOMIC & AUTACOID PHARMACOLOGY, Issue 1-2 2009R. Alcántara-Hernández Summary 1,Mitogen-activated protein kinases mediate hormone/neurotransmitter action on proliferation and differentiation and participate in receptor regulation. The effect of inhibitors of mitogen-activated kinase kinase (MEK) on ,1B -adrenoceptor phosphorylation state and function was studied using different cell lines. It was observed that at nanomolar concentrations the MEK inhibitors, PD98059 (2,-amino-3,-methoxyflavone) and UO126 [1,4-(diamino-2,3-dicyano/1,4-bis-(2-aminophenylthio)-butadiene], increased ,1B -adrenoceptor phosphorylation and diminished the functional response of this receptor to noradrenaline. These agents did not alter the action of lysophosphatidic acid. 2,Staurosporine (IC50 , 0.8 nm) (a general protein kinase inhibitor) and bis-indolyl-maleimide I (IC50 , 200 nm) (a selective protein kinase C inhibitor) inhibited PD98059-induced ,1B -adrenoceptor phosphorylation. In contrast, neither wortmannin (phosphoinositide 3-kinase inhibitor) nor genistein (protein tyrosine kinase inhibitor) had any effect. The data suggest the possibility that MEK might exert control on the activity of the enzymes that regulate receptor phosphorylation, such as G-protein-coupled receptor kinases, protein kinase C or serine/threonine protein phosphatases. 3,Coimmunoprecipitation studies showed a constant association of total extracellular signal-regulated kinase 2 (ERK2) with ,1B -adrenoceptors. Association of phospho-ERK 1/2 to ,1B -adrenoceptors increased not only in response to agonist but also in response to agents that increase ,1B -adrenoceptor and ERK1/2 phosphorylation [such as endothelin-1, phorbol 12-myristate-13-acetate (PMA) and epidermal growth factor (EGF)]; not surprisingly, PD98059 decreased this effect. 4,Our data show that blockade of MEK activity results in increased ,1B -adrenoceptor phosphorylation, diminished adrenoceptor function and perturbation of receptor,ERK1/2 interaction. [source] |