Meiotic Resumption (meiotic + resumption)

Distribution by Scientific Domains


Selected Abstracts


Modulation of O-GlcNAc glycosylation during Xenopus oocyte maturation,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2004
Tony Lefebvre
Abstract O-linked N -acetylglucosamine (O-GlcNAc) glycosylation is a post-translational modification, which is believed antagonises phosphorylation. We have studied the O-GlcNAc level during Xenopus oocyte meiotic resumption, taking advantage of the high synchrony of this model which is dependent upon a burst of phosphorylation. Stimulation of immature stage VI oocytes using progesterone was followed by a 4.51,±,0.32 fold increase in the GlcNAc content, concomitantly to an increase in phosphorylation, notably on two cytoplasmic proteins of 66 and 97 kDa. The increase of O-GlcNAc for the 97 kDa protein, which we identified as ,-catenin was partly related to its accumulation during maturation, as was demonstrated by the use of the protein synthesis inhibitor,cycloheximide. Microinjection of free GlcNAc, which inhibits O-glycosylated proteins,lectins interactions, delayed the progesterone-induced maturation without affecting the O-GlcNAc content. Our results suggest that O-GlcNAc glycosylation could regulate protein,protein interactions required for the cell cycle kinetic. © 2004 Wiley-Liss, Inc. [source]


Behaviors of ATP-dependent chromatin remodeling factors during maturation of bovine oocytes in vitro

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2010
Gabbine Wee
The mammalian oocyte undergoes dynamic changes in chromatin structure to reach complete maturation. However, little known is about behaviors of ATP-dependent chromatin remodeling factors (ACRFs) during meiosis. Here, we found that respective ACRFs may differently behave in the process of oocyte maturation in the bovine. All ACRFs interacted with oocytic chromatin at the germinal vesicle (GV) stage. Mi-2 and hSNF2H disappeared from GV-chromatin within 1,hr of in vitro culture whereas Brg-1 and BAF-170 were retained throughout germinal vesicle break down (GVBD). Brg-1 was localized on the condensed chromatin outside, whereas BAF-170 was entirely excluded from condensed chromatin. Thereafter, Brg-1 and BAF-170 interacted with metaphase I and metaphase II chromosomes. These results imply that Mi-2 and hSNF2H may initiate the meiotic resumption, and Brg-1 and BAF-170 may support chromatin condensation during meiosis. In addition, DNA methylation and methylation of histone H3 at lysine 9 (H3K9) seem to be constantly retained in the oocyte chromatin throughout in vitro maturation. Inhibition of ACRF activity by treatment with the inhibitor apyrase led to retarded chromatin remodeling in bovine oocytes, thereby resulting in poor development of fertilized embryos. Therefore, these results indicate that precise behaviors of ACRFs during meiosis are critical for nuclear maturation and subsequent embryonic development in the bovine. Mol. Reprod. Dev. 77: 126,135, 2010. © 2009 Wiley-Liss, Inc. [source]


Fatty acid oxidation and meiotic resumption in mouse oocytes

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 9 2009
Stephen M. Downs
We have examined the potential role of fatty acid oxidation (FAO) in AMP-activated protein kinase (AMPK)-induced meiotic maturation. Etomoxir and malonyl CoA, two inhibitors of carnitine palmitoyl transferase-1 (CPT1), and thus FAO, blocked meiotic induction in dbcAMP-arrested cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) by the AMPK activator, AICAR. C75, an activator of CPT1 and FAO, stimulated meiotic resumption in CEO and DO. This effect was insensitive to the AMPK inhibitor, compound C, indicating an action downstream of AMPK. Palmitic acid or carnitine also promoted meiotic resumption in DO in the presence of AICAR. Since C75 also suppresses the activity of fatty acid synthase (FAS), we tested another FAS inhibitor, cerulenin. Cerulenin stimulated maturation in arrested oocytes, but to a lesser extent, exhibited significantly slower kinetics and was effective in CEO but not DO. Moreover, etomoxir completely blocked C75-induced maturation but was ineffective in cerulenin-treated oocytes, suggesting that the meiosis-inducing action of C75 is through activation of FAO within the oocyte, while that of cerulenin is independent of FAO and acts within the cumulus cells. Finally, we determined that long chain, but not short chain, fatty acyl carnitine derivatives were stimulatory to oocyte maturation. Palmitoyl carnitine stimulated maturation in both CEO and DO, with rapid kinetics in DO; this effect was blocked by mercaptoacetate, a downstream inhibitor of FAO. These results indicate that activation of AMPK stimulates meiotic resumption in mouse oocytes by eliminating a block to FAO. Mol. Reprod. Dev. 76: 844,853, 2009. © 2009 Wiley-Liss, Inc. [source]


Protein synthesis and mRNA storage in cattle oocytes maintained under meiotic block by roscovitine inhibition of MPF activity

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004
Céline Vigneron
Abstract Roscovitine, a specific inhibitor of MPF kinase activity, has been shown to block efficiently and reversibly the meiotic resumption of oocytes from different species, including cattle. In view to verify that oocytes maintain germinal vesicle like molecular activities under roscovitine treatment, we compared in the present study the M-phase Promoting Factor (MPF) and Mitogen Activated Protein (MAP) kinase activities; protein synthesis and phosphorylation patterns in oocytes and cumulus cells; and CDK1 and Cyclin B messengers storage under control culture and under roscovitine inhibition. We observed that roscovitine induced a full and reversible inhibition of MPF kinase activity and of the activating phosphorylation of both ERK1/2 MAPK. During in vivo maturation, there was a highly significant increase in the relative mRNA level of both cyclin B1 and CDK1 whereas during in vitro culture, the relative amount of CDK1 messenger was reduced. These messengers may be used as markers for the optimization of in vitro maturation treatment. Roscovitine reversibly prevented this drop in relative quantities of CDK1 messenger. Oocytes cultured in the presence of roscovitine maintained a GV like profile of protein synthesis except that two proteins of 48 and 64 kDa specific of matured oocytes also appeared under roscovitine treatment. However, roscovitine did not prevent most of the modifications of protein phosphorylation pattern observed during maturation. In conclusion, results of this study revealed that the use of roscovitine did not prevent all the events related to maturation of bovine oocytes. Mol. Reprod. Dev. 69: 457,465, 2004. © 2004 Wiley-Liss, Inc. [source]


Several signaling pathways are involved in the control of cattle oocyte maturation

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004
Céline Vigneron
Abstract The main limit of in vitro production of domestic mammal embryos comes from the low capacity of in vitro matured oocytes to develop after fertilization. As soon as they are separated from follicular environment, oocytes spontaneously resume meiosis without completion of their terminal differentiation. Roscovitine (ROS), an inhibitor of M-phase promoting factor (MPF) kinase activity reversibly blocks the meiotic resumption in vitro. However, in cattle maturing oocytes several cellular events such as protein synthesis and phosphorylation, chromatin condensation and nuclear envelope folding escape ROS inhibition suggesting the alternative pathways in oocyte maturation. We compared the level of synthesis and phosphorylation of several protein kinases during bovine cumulus oocyte complex (COC) maturation in vitro in the presence or not of epidermal growth factor (EGF) and ROS. We showed that during the EGF-stimulated maturation, ROS neither affected the decrease of EGF receptor (EGFR) nor did inhibit totally its phosphorylation in cumulus cells and also did not totally eliminate tyrosine phosphorylation in oocytes. However, ROS did inhibit the Phosphoinositide 3-kinase (PI3) activity when oocytes mature without EGF. Accumulation of Akt/PKB (protein kinase B), JNK1/2 (jun N-terminal kinases) and Aurora-A in oocytes during maturation was not affected by ROS. However, the phosphorylation of Akt but not JNKs was diminished in ROS-treated oocytes. Thus, PI3 kinase/Akt, JNK1/2 and Aurora-A are likely to be involved in the regulation of bovine oocyte maturation and some of these pathways seem to be independent to MPF activity and meiotic resumption. This complex regulation may explain the partial meiotic arrest of ROS-treated oocytes and the accelerated maturation observed after such treatment. Mol. Reprod. Dev. 69: 466,474, 2004. © 2004 Wiley-Liss, Inc. [source]


Hypoxanthine (HX) inhibition of in vitro meiotic resumption in goat oocytes

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2003
Suofeng Ma
Abstract To improve in vitro maturation and to understand the mechanism for meiotic resumption of oocytes, meiotic progression, and its control by hypoxanthine (HX) were studied in goat oocytes. Ovaries were obtained from a local abattoir, and cumulus,oocyte complexes (COCs) and follicular fluid were collected from follicles of different surface diameters (SDs). The meiotic competence and progression of oocytes were observed, and the concentration of HX in the follicular fluid and culture media was measured by high-performance liquid chromatography (HPLC). Full meiotic competence of goat oocytes was acquired in follicles of ,1.5 mm in SD with 90% of the oocytes developing to metaphase II (MII) stage after 24 hr in culture. The HX concentration in follicular fluid decreased with follicle development, from the highest level of 1.16 mM in ,0.5 mm follicles to the lowest level of 0.45 mM in ,5 mm follicles. HX inhibited meiotic resumption of goat oocytes in a concentration-related manner but this inhibitory effect declined gradually. When we renewed the medium at 4 hr of HX-199 (TCM-199 supplemented with 4 mM HX) culture, the percentage of oocytes with intact germinal vesicle (GV) did not increase but decreased significantly instead. HPLC measurement of HX in the HX-199 culture drops indicated that the HX concentration declined from 0 hr to 4 hr of culture and after medium renewal at 4 hr of culture. By adding dibutyryl cAMP (db-cAMP) at medium renewal, we found that db-cAMP held up the decline of GV percentages. Together, these results were consistent with the possibility that the decline of HX inhibitory effect was not due to HX depletion but rather due to the negative feedback of the metabolites on its further uptake by oocytes. Goat oocytes were capable of normal nuclear maturation and activation after temporal arrest by HX, but prolonged exposure to HX induced spontaneous activation. Mol. Reprod. Dev. 66: 306,313, 2003. © 2003 Wiley-Liss, Inc. [source]


Histone H1 and MAP Kinase Activities in Bovine Oocytes following Protein Synthesis Inhibition

REPRODUCTION IN DOMESTIC ANIMALS, Issue 3-4 2001
B Meinecke
In vitro nuclear maturation is associated with known activity profiles of the M-phase promoting factor (MPF) and the mitogen-activated protein (MAP) kinases, which are two key regulators of mitotic and meiotic cell cycles. Initiation of meiotic resumption in vitro can be prevented by cycloheximide treatment and after removal of the inhibitor germinal vesicle breakdown takes place nearly twice as fast as in untreated controls. In this study experiments were conducted in order to examine the chromosome condensation status and the dynamics of MPF and MAP kinase activities after cycloheximide treatment (10 ,g/ml) of cumulus-enclosed oocytes for 17 and 24 h, respectively, and subsequent culture in inhibitor-free medium for various times. Bovine oocytes displayed variations in the degree of chromosome condensation at the end of the inhibitor treatment phase. Following removal of the inhibitor germinal vesicle breakdown occurred after 4,5 h of subsequent culture in inhibitor-free medium. MPF and MAP kinase exhibited low activities during the first 1,3 h following cycloheximide treatment. Increasing levels of enzyme activities were detected 4,7 h following cycloheximide treatment for 17 and 24 h, respectively, and subsequent culture in inhibitor-free medium. The patterns of enzyme activities corresponded with the accelerated nuclear maturation process. It can be concluded that cycloheximide treatment does not lead to a more synchronous course of nuclear maturation and that the activities of both, MPF and MAP kinase are initiated at least 2,5 h earlier in comparison with untreated oocytes. [source]


Porcine CPEB1 is involved in Cyclin B translation and meiotic resumption in porcine oocytes

ANIMAL SCIENCE JOURNAL, Issue 4 2010
Yukio NISHIMURA
ABSTRACT Ovarian immature oocytes accumulate many dormant maternal mRNAs, which have short poly(A) tails. Cytoplasmic-polyadenylation-element binding protein (CPEB) has been reported to play key roles for the elongation of the tails and the translation of these mRNAs in Xenopus oocytes. However, the functions of CPEB in meiotic resumption have not yet been established in mammalian oocytes. The present study examined the roles of porcine CPEB in Cyclin B syntheses and meiotic resumption of porcine oocytes. Porcine CPEB1 (pCPEB1) cDNA was cloned from total RNA of immature oocytes by RT-PCR. The overexpression of pCPEB1 by mRNA injection into immature oocytes increased Cyclin B expression and the rate of meiotic resumption. Conversely, the inhibition of endogenous CPEB by expression of a dominant-negative mutant pCPEB1 (AA-CPEB), which replaced the expected phosphorylation sites with alanines, had the effect of inhibiting Cyclin B synthesis, ribosomal S6 kinase phosphorylation (an indicator of Mos activity), and meiotic resumption. The inhibition of porcine Aurora A by an injection of antisense RNA enhanced the inhibitory effects of AA-CPEB. These results suggest the involvement of mammalian CPEB1 in Cyclin B syntheses and meiotic resumption in mammalian oocytes. In addition, the phosphorylation sites of pCPEB1 were identified and are suggested to be phosphorylated by porcine Aurora A. [source]


Possible involvement of phosphatidylinositol 3-kinase in the maintenance of metaphase II attest in porcine oocytes matured in vitro

ANIMAL SCIENCE JOURNAL, Issue 1 2010
Junya ITO
ABSTRACT It has been reported that phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB) pathway plays a crucial role in the meiotic resumption and progression to the metaphase II (MII) stage of oocytes. However, the role of this pathway in meiotic arrest at the MII stage (cytostatic activity) is not well understood. In this study the effect of a PI3K inhibitor, LY294002, on the MAPK and p34cdc2 kinase activities of matured porcine oocytes was examined. After maturation culture, both the MAPK and p34cdc2 kinase activities in the oocytes were gradually decreased in a time-dependent manner. Although 25 µmol/L LY294002 did not affect either the MAPK or p34cdc2 kinase activities, 50 µmol/L LY294002 suppressed the PKB phosphorylation and slightly decreased MAPK activity, but not the p34cdc2 kinase activity. Therefore the effect of 10 µmol/L Ca2+ ionophore which was reported as inducing a transient decrease of p34cdc2 kinase but not MAPK activities, was also examined in LY294002-treated oocytes. By additional treatment with LY294002 after Ca2+ ionophore, both the MAPK and p34cdc2 kinase activities were decreased in a time-dependent manner, concomitantly with improvement of pronuclear formation. Therefore, we concluded that PI3K is involved in the maintenance of MAPK activity in matured porcine oocytes. [source]


Curcumin disrupts meiotic and mitotic divisions via spindle impairment and inhibition of CDK1 activity

CELL PROLIFERATION, Issue 4 2010
A. Bielak-Zmijewska
Objectives:, Curcumin, a natural compound, is a potent anti-cancer agent, which inhibits cell division and/or induces cell death. It is believed that normal cells are less sensitive to curcumin than malignant cells; however, the mechanism(s) responsible for curcumin's effect on normal cells are poorly understood. The aim of this study was to verify the hypothesis that curcumin affects normal cell division by influencing microtubule stability, using mouse oocyte and early embryo model systems. Materials and methods:, Maturating mouse oocytes and two-cell embryos were treated with different concentrations of curcumin (10,50 ,m), and meiotic resumption and mitotic cleavage were analysed. Spindle and chromatin structure were visualized using confocal microscopy. In addition, acetylation and in vitro polymerization of tubulin, in the presence of curcumin, were investigated and the damage to double-stranded DNA was studied using ,H2A.X. CDK1 activity was measured. Results and conclusions:, We have shown for the first time, that curcumin, in a dose-dependent manner, delays and partially inhibits meiotic resumption of oocytes and inhibits meiotic and mitotic divisions by causing disruption of spindle structure and does not induce DNA damage. Our analysis indicated that curcumin affects CDK1 kinase activity but does not directly affect microtubule polymerization and tubulin acetylation. As our study showed that curcumin impairs generative and somatic cell division, its future clinical use or of its derivatives with improved bioavailability after oral administration, should take into consideration the possibility of extensive side-effects on normal cells. [source]