Home About us Contact | |||
Meiotic Cell Cycle (meiotic + cell_cycle)
Selected AbstractsThe A-type cyclins and the meiotic cell cycle in mammalian male germ cellsINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 4 2004Debra J. Wolgemuth Summary There are two mammalian A-type cyclins, cyclin Al and A2. While cyclin A1 is limited to male germ cells, cyclin A2 is widely expressed. Cyclin A2 promotes both Gl/S and G2/M transitions in somatic cells and cyclin A2-deficient mice are early embryonic lethal. We have shown that cyclin Al is essential for passage of spermatocytes into meiosis I (MI) by generating mice null for the cyclin A1 gene Ccna1. Both Ccna1,/, males and females were healthy but the males were sterile because of a cell cycle arrest before MI. This arrest was associated with desynapsis abnormalities, low M-phase promoting factor activity, and apoptosis. We have now determined that human cyclin A1 is expressed in similar stages of spermatogenesis and are exploring its role in human male infertility and whether it may be a novel target for new approaches for male contraception. [source] Zinc regulates the ability of Cdc25C to activate MPF/cdk1JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2007Lu Sun Zn2+ is an essential micronutrient for the growth and development of multicellular organisms, as Zn2+ deficiencies lead to growth retardation and congenital malformations (Vallee, BL, Falchuk, KH. 1993. Physiol Rev., 73:79,118). At the cellular level Zn2+ depravation results in proliferation defects in many cell types (Vallee, BL, Falchuk, KH. 1993. Physiol Rev., 73:79,118), however the molecular pathways involved remain poorly defined. Here we show that the transition metal chelator TPEN (N,N,N,,N,-tetrakis(2-pyridylmethyl) ethylene diamine) blocks the G2/M transition of the meiotic cell cycle by inhibiting Cdc25C-cdk1 activation. ICP-MS analyses reveal that Cdc25C is a Zn2+ -binding metalloprotein, and that TPEN effectively strips Zn2+ away from the enzyme. Interestingly, although apo-Cdc25C (Zn2+ -deficient) remains fully catalytically active, it is compromised in its ability to dephosphorylate and activate MPF/cdk1. Thus, Zn2+ is an important regulator of Cdc25C function in vivo. Because of the conserved essential role of the Cdc25C-cdk1 module in the eukaryotic cell cycle, these studies provide fundamental insights into cell cycle regulation. J. Cell. Physiol. 213: 98,104, 2007. © 2007 Wiley-Liss, Inc. [source] In the beginning: the initiation of meiosisBIOESSAYS, Issue 6 2007Wojciech P. Pawlowski The most-critical point of reproductive development in all sexually reproducing species is the transition from mitotic to meiotic cell cycle. Studies in unicellular fungi have indicated that the decision to enter meiosis must be made before the beginning of the premeiotic S phase. Recent data from the mouse1 suggest that this timing of meiosis initiation is a universal feature shared also by multicellular eukaryotes. In contrast, the signaling cascade that leads to meiosis initiation shows great diversity among species. BioEssays 29:511,514, 2007. © 2007 Wiley Periodicals, Inc. [source] Identification and functional analysis of the gene for type I myosin in fission yeastGENES TO CELLS, Issue 3 2001Mika Toya Background Type I myosin is highly conserved among eukaryotes, and apparently plays important roles in a number of cellular processes. In the budding yeast, two myosin I species have been identified and their role in F-actin assembly has been inferred. Results We cloned the fission yeast myo1 gene, which apparently encoded a myosin I protein. Disruption of myo1 was not lethal, but it caused growth retardation at high and low temperatures, sensitivity to a high concentration of KCl, and aberrance in cell morphology associated with an abnormal distribution of F-actin patches. An abnormal deposition of cell wall materials was also seen. Homothallic myo1, cells could mate, but heterothallic myo1, cells were poor in conjugation. Myo1p was necessary for the encapsulation of spores. The tail domain of Myo1p was pivotal for its function. Calmodulin could bind to Myo1p through the IQ domain at the neck. Conclusions Myo1p appears to control the redistribution of F-actin patches during the cell cycle. Loss of Myo1p function is likely to slow down the actin assembly/disassembly process, which results in a failure of the actin cycle to catch up with other events in both the mitotic and meiotic cell cycles, including extension of the conjugation tubes. [source] Histone H1 and MAP Kinase Activities in Bovine Oocytes following Protein Synthesis InhibitionREPRODUCTION IN DOMESTIC ANIMALS, Issue 3-4 2001B Meinecke In vitro nuclear maturation is associated with known activity profiles of the M-phase promoting factor (MPF) and the mitogen-activated protein (MAP) kinases, which are two key regulators of mitotic and meiotic cell cycles. Initiation of meiotic resumption in vitro can be prevented by cycloheximide treatment and after removal of the inhibitor germinal vesicle breakdown takes place nearly twice as fast as in untreated controls. In this study experiments were conducted in order to examine the chromosome condensation status and the dynamics of MPF and MAP kinase activities after cycloheximide treatment (10 ,g/ml) of cumulus-enclosed oocytes for 17 and 24 h, respectively, and subsequent culture in inhibitor-free medium for various times. Bovine oocytes displayed variations in the degree of chromosome condensation at the end of the inhibitor treatment phase. Following removal of the inhibitor germinal vesicle breakdown occurred after 4,5 h of subsequent culture in inhibitor-free medium. MPF and MAP kinase exhibited low activities during the first 1,3 h following cycloheximide treatment. Increasing levels of enzyme activities were detected 4,7 h following cycloheximide treatment for 17 and 24 h, respectively, and subsequent culture in inhibitor-free medium. The patterns of enzyme activities corresponded with the accelerated nuclear maturation process. It can be concluded that cycloheximide treatment does not lead to a more synchronous course of nuclear maturation and that the activities of both, MPF and MAP kinase are initiated at least 2,5 h earlier in comparison with untreated oocytes. [source] Cornelia de Lange syndrome, cohesin, and beyondCLINICAL GENETICS, Issue 4 2009J Liu Cornelia de Lange syndrome (CdLS) (OMIM #122470, #300590 and #610759) is a dominant genetic disorder with multiple organ system abnormalities which is classically characterized by typical facial features, growth and mental retardation, upper limb defects, hirsutism, gastrointestinal and other visceral system involvement. Mutations in three cohesin proteins, a key regulator of cohesin, NIPBL, and two structural components of the cohesin ring SMC1A and SMC3, etiologically account for about 65% of individuals with CdLS. Cohesin controls faithful chromosome segregation during the mitotic and meiotic cell cycles. Multiple proteins in the cohesin pathway are also involved in additional fundamental biological events such as double-strand DNA break repair and long-range regulation of transcription. Moreover, chromosome instability was recently associated with defective sister chromatid cohesion in several cancer studies, and an increasing number of human developmental disorders is being reported to result from disruption of this pathway. Here, we will discuss the human disorders caused by alterations of cohesin function (termed ,cohesinopathies'), with an emphasis on the clinical manifestations of CdLS and mechanistic studies of the CdLS-related proteins. [source] |