Mechanical Hypersensitivity (mechanical + hypersensitivity)

Distribution by Scientific Domains


Selected Abstracts


Transforming growth factor-activated kinase 1 induced in spinal astrocytes contributes to mechanical hypersensitivity after nerve injury

GLIA, Issue 7 2008
Hirokazu Katsura
Abstract Mitogen-activated protein kinase (MAPK) plays an important role in the induction and maintenance of neuropathic pain. Transforming growth factor-activated kinase 1 (TAK1), a member of the MAPK kinase kinase family, is indispensable for the activation of c-Jun N-terminal kinase (JNK) and p38 MAPK. We now show that TAK1 induced in spinal cord astrocytes is crucial for mechanical hypersensitivity after peripheral nerve injury. Nerve injury induced a striking increase in the expression of TAK1 in the ipsilateral dorsal horn, and TAK1 was increased in hyperactive astrocytes, but not in neurons or microglia. Intrathecal administration of TAK1 antisense oligodeoxynucleotide (AS-ODN) prevented and reversed nerve injury-induced mechanical, but not heat hypersensitivity. Furthermore, TAK1 AS-ODN suppressed the activation of JNK1, but not p38 MAPK, in spinal astrocytes. In contrast, there was no change in TAK1 expression in primary sensory neurons, and TAK1 AS-ODN did not attenuate the induction of transient receptor potential ion channel TRPV1 in sensory neurons. Taken together, these results demonstrate that TAK1 upregulation in spinal astrocytes has a substantial role in the development and maintenance of mechanical hypersensitivity through the JNK1 pathway. Thus, preventing the TAK1/JNK1 signaling cascade in astrocytes might provide a fruitful strategy for treating intractable neuropathic pain. © 2008 Wiley-Liss, Inc. [source]


Role of TNF alpha and PLF in bone remodeling in a rat model of repetitive reaching and grasping,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010
Shobha Rani
We have previously developed a voluntary rat model of highly repetitive reaching that provides an opportunity to study effects of non-weight bearing muscular loads on bone and mechanisms of naturally occurring inflammation on upper limb tissues in vivo. In this study, we investigated the relationship between inflammatory cytokines and matricellular proteins (Periostin-like-factor, PLF, and connective tissue growth factor, CTGF) using our model. We also examined the relationship between inflammatory cytokines, PLF and bone formation processes. Rats underwent initial training for 5 weeks, and then performed a high repetition high force (HRHF) task (12,reaches/min, 60% maximum grip force, 2,h/day, 3 days/week) for 6 weeks. We then examined the effect of training or task performance with or without treatment with a rat specific TNF, antibody on inflammatory cytokines, osteocalcin (a bone formation marker), PLF, CTGF, and behavioral indicators of pain or discomfort. The HRHF task decreased grip strength and induced forepaw mechanical hypersensitivity in both trained control and 6-week HRHF animals. Two weeks of anti-TNF, treatment improved grip strength in both groups, but did not ameliorate forepaw hypersensitivity. Moreover, anti-TNF, treatment attenuated task-induced increases in inflammatory cytokines (TNF,, IL-1,, and MIP2 in serum; TNF, in forelimb bone and muscles) and serum osteocalcin in 6-week HRHF animals. PLF levels in forelimb bones and flexor digitorum muscles increased significantly in 6-week HRHF animals, increases attenuated by anti-TNF, treatment. CTGF levels were unaffected by task performance or anti-TNF, treatment in 6-week HRHF muscles. In primary osteoblast cultures, TNF,, MIP2 and MIP3a treatment increased PLF levels in a dose dependent manner. Also in primary osteoblast cultures, increased PLF promoted proliferation and differentiation, the latter assessed by measuring Runx2, alkaline phosphatase (ALP) and osteocalcin mRNA levels; ALP activity; as well as calcium deposition and mineralization. Increased PLF also promoted cell adhesion in MC3T3-E1 osteoblast-like cell cultures. Thus, tissue loading in vivo resulted in increased TNF,, which increased PLF, which then induced anabolic bone formation, the latter results confirmed in vitro. J. Cell. Physiol. 225: 152,167, 2010. © 2010 Wiley-Liss, Inc. [source]


Pain relief by gabapentin and pregabalin via supraspinal mechanisms after peripheral nerve injury

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2008
Mitsuo Tanabe
Abstract The antihypersensitivity actions of gabapentin and pregabalin have been well characterized in a large number of studies, although the underlying mechanisms have yet to be defined. We have been focusing on the supraspinal structure as a possible site for their action and have demonstrated that intracerebroventricular (i.c.v.) administration of gabapentin and pregabalin indeed decreases thermal and mechanical hypersensitivity in a murine chronic pain model involving partial ligation of the sciatic nerve. This novel supraspinally mediated analgesic effect was markedly suppressed by either depletion of central noradrenaline (NA) or blockade of spinal ,2 -adrenergic receptors. Moreover, i.c.v. injection of gabapentin and pregabalin increased spinal NA turnover in mice only after peripheral nerve injury. In locus coeruleus (LC) neurons in brainstem slices prepared from mice after peripheral nerve injury, gabapentin reduced the ,-aminobutyric acid (GABA) type A receptor-mediated inhibitory postsynaptic currents (IPSCs). Glutamate-mediated excitatory synaptic transmission was hardly affected. Moreover, gabapentin did not reduce IPSCs in slices taken from mice given a sham operation. Although gabapentin altered neither the amplitude nor the frequency of miniature IPSCs, it reduced IPSCs together with an increase in the paired-pulse ratio, suggesting that gabapentin acts on the presynaptic GABAergic nerve terminals in the LC. Together, the data suggest that gabapentin presynaptically reduces GABAergic synaptic transmission, thereby removing the inhibitory influence on LC neurons only in neuropathic pain states, leading to activation of the descending noradrenergic system. © 2008 Wiley-Liss, Inc. [source]


Response Characteristics Of Cutaneous Mechanoreceptors In Neuropathic Rats

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 3 2002
A Bulka
The activity of single myelinated afferents was recorded from dorsal roots L4-5 in normal Sprague-Dawley rats and animals that developed mechanical hypersensitivity following ischemic injury to the sciatic nerve. The mechanical response properties and conduction velocity of afferents conducting through the injury site (about 50% of units) were similar to controls. However, the majority of afferents not conducting through the injury site exhibited ongoing activity. The results suggest that mechanical allodynia may be at least partly due to the central integration of activity arising from these two populations of afferents in neuropathic rats. [source]


Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2010
Jerzy Karczewski
BACKGROUND AND PURPOSE Inflammatory pain is triggered by activation of pathways leading to the release of mediators such as bradykinin, prostaglandins, interleukins, ATP, growth factors and protons that sensitize peripheral nociceptors. The activation of acid-sensitive ion channels (ASICs) may have particular relevance in the development and maintenance of inflammatory pain. ASIC3 is of particular interest due to its restricted tissue distribution in the nociceptive primary afferent fibres and its high sensitivity to protons. EXPERIMENTAL APPROACH To examine the contribution of ASIC3 to the development and maintenance of muscle pain and inflammatory pain, we studied the in vivo efficacy of a selective ASIC3 inhibitor, APETx2, in rats. KEY RESULTS Administration of APETx2 into the gastrocnemius muscle prior to the administration of low pH saline prevented the development of mechanical hypersensitivity, whereas APETx2 administration following low-pH saline was ineffective in reversing hypersensitivity. The prevention of mechanical hypersensitivity produced by acid administration was observed whether APETx2 was applied via i.m. or i.t. routes. In the complete Freund's adjuvant (CFA) inflammatory pain model, local administration of APETx2 resulted in a potent and complete reversal of established mechanical hypersensitivity, whereas i.t. application of APETx2 was ineffective. CONCLUSIONS AND IMPLICATIONS ASIC3 contributed to the development of mechanical hypersensitivity in the acid-induced muscle pain model, whereas ASIC3 contributed to the maintenance of mechanical hypersensitivity in the CFA inflammatory pain model. The contribution of ASIC3 to established hypersensitivity associated with inflammation suggests that this channel may be an effective analgesic target for inflammatory pain states. [source]