Matter Tracts (matter + tract)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Matter Tracts

  • white matter tract


  • Selected Abstracts


    Cross-sectional analysis of the association between age and corpus callosum size in chimpanzees (Pan troglodytes)

    DEVELOPMENTAL PSYCHOBIOLOGY, Issue 2 2010
    William D. Hopkins
    Abstract The CC is the major white matter tract connecting the cerebral hemispheres and provides for interhemispheric integration of sensory, motor and higher-order cognitive information. The midsagittal area of the CC has been frequently used as a marker of brain development in humans. We report the first investigation into the development of the corpus callosum and its regional subdivisions in chimpanzees (Pan troglodytes). Magnetic resonance images were collected from 104 chimpanzees (female n,=,63, male n,=,41) ranging in age from 6 years (pre-pubescent period) to 54 years (old age). Sustained linear growth was observed in the area of the CC subdivision of the genu; areas of the posterior midbody and anterior midbody displayed nonlinear growth during development. After adjusting for total brain size, we observed linear growth trajectories of the total CC and CC subdivisions of the genu, posterior midbody, isthmus and splenium, and nonlinear growth trajectories of the rostral body and anterior midbody. These developmental patterns are similar to the development of the CC in humans. As the growth curves of the CC mirrors growth seen in the percentage of white matter in humans, our results suggest chimpanzees show continued white matter development in regions related to cognitive development. © 2010 Wiley Periodicals, Inc. Dev Psychobiol 52:133,141, 2010 [source]


    Maintenance of the relative proportion of oligodendrocytes to axons even in the absence of BAX and BAK

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009
    Kumi Kawai
    Abstract Highly purified oligodendroglial lineage cells from mice lacking functional bax and bak genes were resistant to apoptosis after in-vitro differentiation, indicating an essential role of the intrinsic apoptotic pathway in apoptosis of oligodendrocytes in the absence of neurons (axons) and other glial cells. These mice therefore provide a valuable tool with which to evaluate the significance of the intrinsic apoptotic pathway in regulating the population sizes of oligodendrocytes and oligodendroglial progenitor cells. Quantitative analysis of the optic nerves and the dorsal columns of the spinal cord revealed that the absolute numbers of mature oligodendrocytes immunolabeled for aspartoacylase and adult glial progenitor cells expressing NG2 chondroitin sulfate proteoglycan were increased in both white matter tracts of adult bax/bak -deficient mice and, to a lesser extent, bax -deficient mice, except that there was no increase in NG2-positive progenitor cells in the dorsal columns of these strains of mutant mice. These increases in mature oligodendrocytes and progenitor cells in bax/bak -deficient mice were unexpectedly proportional to increases in numbers of axons in these white matter tracts, thus retaining the oligodendroglial lineage to axon ratios of at most 1.3-fold of the physiological numbers. This is in contrast to the prominent expansion in numbers of neural precursor cells in the subventricular zones of these adult mutant mice. Our study indicates that homeostatic control of cell number is different for progenitors of the oligodendroglial and neuronal lineages. Furthermore, regulatory mechanism(s) operating in addition to apoptotic elimination through the intrinsic pathway, appear to prevent the overproduction of highly mitotic oligodendroglial progenitor cells. [source]


    Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients

    HUMAN BRAIN MAPPING, Issue 11 2009
    Judith D. Schaechter
    Abstract Greater loss in structural integrity of the ipsilesional corticospinal tract (CST) is associated with poorer motor outcome in patients with hemiparetic stroke. Animal models of stroke have demonstrated that structural remodeling of white matter in the ipsilesional and contralesional hemispheres is associated with improved motor recovery. Accordingly, motor recovery in patients with stroke may relate to the relative strength of CST degeneration and remodeling. This study examined the relationship between microstructural status of brain white matter tracts, indexed by the fractional anisotropy (FA) metric derived from diffusion tensor imaging (DTI) data, and motor skill of the stroke-affected hand in patients with chronic stroke. Voxelwise analysis revealed that motor skill significantly and positively correlated with FA of the ipsilesional and contralesional CST in the patients. Additional voxelwise analyses showed that patients with poorer motor skill had reduced FA of bilateral CST compared to normal control subjects, whereas patients with better motor skill had elevated FA of bilateral CST compared to controls. These findings were confirmed using a DTI-tractography method applied to the CST in both hemispheres. The results of this study suggest that the level of motor skill recovery achieved in patients with hemiparetic stroke relates to microstructural status of the CST in both the ipsilesional and contralesional hemispheres, which may reflect the net effect of degeneration and remodeling of bilateral CST. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


    Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time

    HUMAN BRAIN MAPPING, Issue 4 2002
    Derek Kenton Jones
    Abstract Our objective was to develop a diffusion tensor MR imaging pulse sequence that allows whole brain coverage with isotropic resolution within a clinically acceptable time. A single-shot, cardiac-gated MR pulse sequence, optimized for measuring the diffusion tensor in human brain, was developed to provide whole-brain coverage with isotropic (2.5 × 2.5 × 2.5 mm) spatial resolution, within a total imaging time of approximately 15 min. The diffusion tensor was computed for each voxel in the whole volume and the data processed for visualization in three orthogonal planes. Anisotropy data were further visualized using a maximum-intensity projection algorithm. Finally, reconstruction of fiber-tract trajectories i.e., ,tractography' was performed. Images obtained with this pulse sequence provide clear delineation of individual white matter tracts, from the most superior cortical regions down to the cerebellum and brain stem. Because the data are acquired with isotropic resolution, they can be reformatted in any plane and the sequence can therefore be used, in general, for macroscopic neurological or psychiatric neuroimaging investigations. The 3D visualization afforded by maximum intensity projection imaging and tractography provided easy visualization of individual white matter fasciculi, which may be important sites of neuropathological degeneration or abnormal brain development. This study has shown that it is possible to obtain robust, high quality diffusion tensor MR data at 1.5 Tesla with isotropic resolution (2.5 × 2.5 × 2.5 mm) from the whole brain within a sufficiently short imaging time that it may be incorporated into clinical imaging protocols. Hum. Brain Mapping 15:216,230, 2002. © 2002 Wiley-Liss, Inc. [source]


    Deviation of Fiber Tracts in the Vicinity of Brain Lesions: Evaluation by Diffusion Tensor Imaging

    ISRAEL JOURNAL OF CHEMISTRY, Issue 1-2 2003
    Yaniv Assaf
    Diffusion Tensor Imaging (DTI) is used to characterize the diffusion properties of deviated white matter caused by brain tumors. DTI was recently shown to be very helpful in delineating white matter both within brain lesions and surrounding them. Displacement of white matter fibers may be one of the consequences of tumor growth adjacent to white matter. The combination of white matter mapping with DTI and gray matter mapping using functional MRI, in some cases, facilitated assessment of the relation between the shifted cortical areas and the corresponding white matter tracts. We found that the fractional anisotropy extracted from DTI is increased by 38% in areas of non-edematous shifted white matter fibers. By contrast, trace apparent diffusion coefficient (ADC) values in those areas were found to be similar to contralateral side and normal control values. Analysis of the three diffusion tensor eigenvalues revealed that the increase in the fractional anisotropy is a result of two processes. The first is the increase in the diffusion parallel to the fibers,,1 (by 18%), and the second is the decrease in the diffusion perpendicular to fibers,,3 (by 34%) as compared with the contralateral side. These opposing changes cause an increase in the diffusion anisotropy but no change in the trace ADC. It is suggested that the pressure caused by the tumor may lead to an increase in white matter fiber tension, thus causing an increase in ,1. On the other hand, the same pressure causes increased fiber density per unit area, leading to a higher degree of restricted diffusion in the extracellular space and, hence, a reduction in ,3. [source]


    Regional and cellular distribution of mitochondrial ferritin in the mouse brain

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2010
    Amanda M. Snyder
    Abstract Iron and mitochondrial dysfunction are important in many neurodegenerative diseases. Several iron transport proteins have been identified that are associated with mitochondria, most recently mitochondrial ferritin. Here we describe the cellular distribution of mitochondrial ferritin in multiple regions of the brain in C57/BL6 mice. Mitochondrial ferritin was found in all regions of the brain, although staining intensity varied between regions. Mitochondrial ferritin was detected throughout the layers of cerebral cortex and in the cerebellum, hippocampus, striatum, choroid plexus, and ependymal cells. The cell type in the brain that stains most prominently for mitochondrial ferritin is neuronal, but oligodendrocytes also stain strongly in both gray matter and in white matter tracts. Mice deficient in H-ferritin do not differ in the mitochondrial ferritin staining pattern or intensity compared with C57/BL6 mice, suggesting that there is no compensatory expression of these proteins. In addition, by using inbred mouse strains with differing levels of iron content, we have shown that regional brain iron content does not affect expression of mitochondria ferritin. The expression of mitochondria ferritin appears to be more influenced by mitochondrial density. Indeed, at an intracellular level, mitochondrial ferritin immunoreaction product is strongest where mitochondrial density is high, as seen in the ependymal cells. Given the importance and relationship between iron and mitochondrial activity, understanding the role of mitochondrial ferritin can be expected to contribute to our knowledge of mitochondrial dysfunction and neurodegenerative disease. © 2010 Wiley-Liss, Inc. [source]


    Conserved fate and function of ferumoxides-labeled neural precursor cells in vitro and in vivo

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2010
    Mikhal E. Cohen
    Abstract Recent progress in cell therapy research for brain diseases has raised the need for non-invasive monitoring of transplanted cells. For therapeutic application in multiple sclerosis, transplanted cells need to be tracked both spatially and temporally, in order to assess their migration and survival in the host tissue. Magnetic resonance imaging (MRI) of superparamagnetic iron oxide-(SPIO)-labeled cells has been widely used for high resolution monitoring of the biodistribution of cells after transplantation into the central nervous system (CNS). Here we labeled mouse glial-committed neural precursor cells (NPCs) with the clinically approved SPIO contrast agent ferumoxides and examined their survival and differentiation in vitro, as well as their functional response to environmental signals present within the inflamed brain of experimental autoimmune encephalomyelitis (EAE) mice in vivo. We show that ferumoxides labeling does not affect NPC survival and pluripotency in vitro. Following intracerebroventricular (ICV) transplantation in EAE mice, ferumoxides-labeled NPCs responded to inflammatory cues in a similar fashion as unlabeled cells. Ferumoxides-labeled NPCs migrated over comparable distances in white matter tracts and differentiated equally into the glial lineages. Furthermore, ferumoxides-labeled NPCs inhibited lymph node cell proliferation in vitro, similarly to non-labeled cells, suggesting a preserved immunomodulatory function. These results demonstrate that ferumoxides-based MRI cell tracking is well suited for non-invasive monitoring of NPC transplantation. © 2009 Wiley-Liss, Inc. [source]


    Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2008
    Saurabh Guleria
    Abstract Diffusion tensor imaging (DTI) has the potential to reveal disruption of white matter microstructure in chronically injured spinal cords. We quantified fractional anisotropy (FA) and mean diffusivity (MD) to demonstrate retrograde Wallerian degeneration (WD) of cranial corticospinal tract (CST) in cervical spinal cord injury (SCI). Twenty-two patients with complete cervical SCI in the chronic stage were studied with DTI along with 13 healthy controls. Mean FA and MD values were computed for midbrain, pons, medulla, posterior limb of internal capsule, and corona radiata. Significant reduction in the mean FA and increase in MD was observed in the cranial CST in patients with SCI compared with controls, suggesting retrograde WD. Statistically significant inverse FA and MD changes were noted in corona radiata, indicating some restoration of spared white matter tracts. Temporal changes in the DTI metrics suggest progressing degeneration in different regions of CST. These spatiotemporal changes in DTI metrics suggest continued WD in injured fibers along with simultaneous reorganization of spared white matter fibers, which may contribute to changing neurological status in chronic SCI patients. © 2008 Wiley-Liss, Inc. [source]


    Developmental profile of ErbB receptors in murine central nervous system: Implications for functional interactions

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2005
    Irina J. Fox
    Abstract The ErbB family, ErbB1 (also known as the epidermal growth factor receptor EGFR), ErbB2, ErbB3, and ErbB4 comprise a group of receptor tyrosine kinases that interact with ligands from the epidermal growth factor (EGF) superfamily, subsequently dimerize, catalytically activate each other by cross-phosphorylation, and then stimulate various signaling pathways. To gain a better understanding of in vivo functions of ErbB receptors in the central nervous system, the current study examined their mRNA expression throughout development in the mouse brain via in situ hybridization. EGFR, ErbB2, and ErbB4 exhibited distinct but sometimes overlapping distributions in multiple cell types within germinal zones, cortex, striatum, and hippocampus in prenatal and postnatal development. In addition, a subpopulation of cells positive for ErbB4 mRNA in postnatal cortex and striatum coexpressed mRNA for either EGFR or GAD67, a marker for ,-aminobutyric acid (GABA)ergic interneurons, suggesting that both ErbB4 and EGFR are coexpressed in GABAergic interneurons. In contrast, ErbB3 mRNA was not detected within the brain during development and only appeared in white matter tracts in adulthood. Together, these findings suggest that ErbB receptors might mediate multiple functions in central nervous system development, some of which may be initiated by EGFR/ErbB4 heterodimers in vivo. © 2005 Wiley-Liss, Inc. [source]


    Delay Discounting Behavior and White Matter Microstructure Abnormalities in Youth With a Family History of Alcoholism

    ALCOHOLISM, Issue 9 2010
    Megan M. Herting
    Background:, Youth with family history of alcohol abuse have a greater risk of developing an alcohol use disorder (AUD). Brain and behavior differences may underlie this increased vulnerability. The current study examined delay discounting behavior and white matter microstructure in youth at high risk for alcohol abuse, as determined by a family history of alcoholism (FH+), and youth without such family history (FH,). Methods:, Thirty-three healthy youth (FH+ = 15, FH, = 18), ages 11 to 15 years, completed a delay discounting task and underwent diffusion tensor imaging. Tract-based spatial statistics (Smith et al., 2006), as well as follow-up region-of-interest analyses, were performed to compare fractional anisotropy (FA) between FH+ and FH, youth. Results:, FH+ youth showed a trend toward increased discounting behavior and had significantly slower reaction times (RTs) on the delay discounting paradigm compared to FH, youth. Group differences in FA were seen in several white matter tracts. Furthermore, lower FA in the left inferior longitudinal fasciculus and the right optic radiation statistically mediated the relationship between FH status and slower RTs on the delay discounting task. Conclusions:, Youth with a family history of substance abuse have disrupted white matter microstructure, which likely contributes to less efficient cortical processing and may act as an intrinsic risk factor contributing to an increased susceptibility of developing AUD. In addition, FHP youth showed a trend toward greater impulsive decision making, possibly representing an inherent personal characteristic that may facilitate substance use onset and abuse in high-risk youth. [source]


    Brain Microstructure Is Related to Math Ability in Children With Fetal Alcohol Spectrum Disorder

    ALCOHOLISM, Issue 2 2010
    Catherine Lebel
    Background:, Children with fetal alcohol spectrum disorder (FASD) often demonstrate a variety of cognitive deficits, but mathematical ability seems to be particularly affected by prenatal alcohol exposure. Parietal brain regions have been implicated in both functional and structural studies of mathematical ability in healthy individuals, but little is known about the brain structure underlying mathematical deficits in children with FASD. The goal of this study was to use diffusion tensor imaging (DTI) to investigate the relationship between mathematical skill and brain white matter structure in children with FASD. Methods:, Twenty-one children aged 5 to 13 years diagnosed with FASD underwent DTI on a 1.5-T MRI scanner and cognitive assessments including the Woodcock-Johnson Quantitative Concepts test. Voxel-based analysis was conducted by normalizing subject images to a template and correlating fractional anisotropy (FA) values across the brain white matter with age-standardized math scores. Results:, Voxel-based analysis revealed 4 clusters with significant correlations between FA and math scores: 2 positively-correlated clusters in the left parietal region, 1 positively-correlated cluster in the left cerebellum, and 1 negatively-correlated cluster in the bilateral brainstem. Diffusion tractography identified the specific white matter tracts passing through these clusters, namely the left superior longitudinal fasciculus, left corticospinal tract and body of the corpus callosum, middle cerebellar peduncle, and bilateral projection fibers including the anterior and posterior limbs of the internal capsule. Conclusions:, These results identify 4 key regions related to mathematical ability and provide a link between brain microstructure and cognitive skills in children with FASD. Given previous findings in typically developing children and those with other abnormal conditions, our results highlight the consistent importance of the left parietal area for mathematical tasks across various populations, and also demonstrate other regions that may be specific to mathematical processing in children with FASD. [source]


    Microstructural Corpus Callosum Anomalies in Children With Prenatal Alcohol Exposure: An Extension of Previous Diffusion Tensor Imaging Findings

    ALCOHOLISM, Issue 10 2009
    Jeffrey R. Wozniak
    Background:, Several studies have now shown corpus callosum abnormalities using diffusion tensor imaging (DTI) in children with fetal alcohol spectrum disorders (FASD) in comparison with nonexposed controls. The data suggest that posterior regions of the callosum may be disproportionately affected. The current study builds on previous efforts, including our own work, and moves beyond midline corpus callosum to probe major inter-hemispheric white matter pathways with an improved DTI tractographic method. This study also expands on our prior work by evaluating a larger sample and by incorporating children with a broader range of clinical effects including full-criteria fetal alcohol syndrome (FAS). Methods:, Participants included 33 children with FASD (8 FAS, 23 partial FAS, 2 static encephalopathy) and 19 nonexposed controls between the ages of 10 and 17 years. Participants underwent DTI scans and intelligence testing. Groups (FASD vs. controls) were compared on fractional anisotropy (FA) and mean diffusivity (MD) in 6 white matter tracts projected through the corpus callosum. Exploratory analyses were also conducted examining the relationships between DTI measures in the corpus callosum and measures of intellectual functioning and facial dysmorphology. Results:, In comparison with the control group, the FASD group had significantly lower FA in 3 posterior tracts of the corpus callosum: the posterior mid-body, the isthmus, and the splenium. A trend-level finding also suggested lower FA in the genu. Measures of white matter integrity and cognition were correlated and suggest some regional specificity, in that only posterior regions of the corpus callosum were associated with visual-perceptual skills. Correlations between measures of facial dysmorphology and posterior regions of the corpus callosum were nonsignificant. Conclusions:, Consistent with previous DTI studies, these results suggest that microstructural posterior corpus callosum abnormalities are present in children with prenatal alcohol exposure and cognitive impairment. These abnormalities are clinically relevant because they are associated with cognitive deficits and appear to provide evidence of abnormalities associated with prenatal alcohol exposure independent of dysmorphic features. As such, they may yield important diagnostic and prognostic information not provided by the traditional facial characteristics. [source]


    Altered White Matter Integrity in Adolescent Binge Drinkers

    ALCOHOLISM, Issue 7 2009
    Tim McQueeny
    Background:, White matter integrity has been found to be compromised in adult alcoholics, but it is unclear when in the course of alcohol exposure white matter abnormalities become apparent. This study assessed microstructural white matter integrity among adolescent binge drinkers with no history of an alcohol use disorder. Methods:, We used diffusion tensor imaging to examine fractional anisotropy (FA), a measure of directional coherence of white matter tracts, among teens with (n = 14) and without (n = 14) histories of binge drinking but no history of alcohol use disorder, matched on age, gender, and education. Results:, Binge drinkers had lower FA than controls in 18 white matter areas (clusters ,27 contiguous voxels, each with p < 0.01) throughout the brain, including the corpus callosum, superior longitudinal fasciculus, corona radiata, internal and external capsules, and commissural, limbic, brainstem, and cortical projection fibers, while exhibiting no areas of higher FA. Among binge drinkers, lower FA in 6 of these regions was linked to significantly greater lifetime hangover symptoms and/or higher estimated peak blood alcohol concentrations. Conclusions:, Binge drinking adolescents demonstrated widespread reductions of FA in major white matter pathways. Although preliminary, these results could indicate that infrequent exposure to large doses of alcohol during youth may compromise white matter fiber coherence. [source]


    Frontal White Matter and Cingulum Diffusion Tensor Imaging Deficits in Alcoholism

    ALCOHOLISM, Issue 6 2008
    Gordon J. Harris
    Background:, Alcoholism-related deficits in cognition and emotion point toward frontal and limbic dysfunction, particularly in the right hemisphere. Prefrontal and anterior cingulate cortices are involved in cognitive and emotional functions and play critical roles in the oversight of the limbic reward system. In the present study, we examined the integrity of white matter tracts that are critical to frontal and limbic connectivity. Methods:, Diffusion tensor magnetic resonance imaging (DT-MRI) was used to assess functional anisotropy (FA), a measure of white matter integrity, in 15 abstinent long-term chronic alcoholic and 15 demographically equivalent control men. Voxel-based and region-based analyses of group FA differences were applied to these scans. Results:, Alcoholic subjects had diminished frontal lobe FA in the right superior longitudinal fascicles II and III, orbitofrontal cortex white matter, and cingulum bundle, but not in corresponding left hemisphere regions. These right frontal and cingulum white matter regional FA measures provided 97% correct group discrimination. Working Memory scores positively correlated with superior longitudinal fascicle III FA measures in control subjects only. Conclusions:, The findings demonstrate white matter microstructure deficits in abstinent alcoholic men in several right hemisphere tracts connecting prefrontal and limbic systems. These white matter deficits may contribute to underlying dysfunction in memory, emotion, and reward response in alcoholism. [source]


    Deep brain stimulation for Parkinson's disease dissociates mood and motor circuits: A functional MRI case study

    MOVEMENT DISORDERS, Issue 12 2003
    Taresa Stefurak MD
    Abstract Behavioral disturbances have been reported with subthalamic (STN) deep brain stimulation (DBS) treatment in Parkinson's disease (PD). We report correlative functional imaging (fMRI) of mood and motor responses induced by successive right and left DBS. A 36-year-old woman with medically refractory PD and a history of clinically remitted depression underwent uncomplicated implantation of bilateral STN DBS. High-frequency stimulation of the left electrode improved motor symptoms. Unexpectedly, right DBS alone elicited several reproducible episodes of acute depressive dysphoria. Structural and functional magnetic resonance imaging (fMRI) imaging was carried out with sequential individual electrode stimulation. The electrode on the left was within the inferior STN, whereas the right electrode was marginally superior and lateral to the intended STN target within the Fields of Forel/zona incerta. fMRI image analysis (Analysis of Functional NeuroImages, AFNI) contrasting OFF versus ON stimulation identified significant lateralized blood oxygen level-dependent (BOLD) signal changes with DBS (P < 0.001). Left DBS primarily showed changes in motor regions: increases in premotor and motor cortex, ventrolateral thalamus, putamen, and cerebellum as well as decreases in sensorimotor/supplementary motor cortex. Right DBS showed similar but less extensive change in motor regions. More prominent were the unique increases in superior prefrontal cortex, anterior cingulate (Brodmann's area [BA] 24), anterior thalamus, caudate, and brainstem, and marked widespread decreases in medial prefrontal cortex (BA 9/10). The mood disturbance resolved spontaneously in 4 weeks despite identical stimulation parameters. Transient depressive mood induced by subcortical DBS stimulation was correlated with changes in mesolimbic cortical structures. This case provides new evidence supporting cortical segregation of motor and nonmotor cortico-basal ganglionic systems that may converge in close proximity at the level of the STN and the adjacent white matter tracts (Fields of Forel/zona incerta). © 2003 Movement Disorder Society [source]


    Neuroanatomy of the Subadult and Fetal Brain of the Atlantic White-sided Dolphin (Lagenorhynchus acutus) from in Situ Magnetic Resonance Images

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 12 2007
    Eric W. Montie
    Abstract This article provides the first anatomically labeled, magnetic resonance imaging (MRI) -based atlas of the subadult and fetal Atlantic white-sided dolphin (Lagenorhynchus acutus) brain. It differs from previous MRI-based atlases of cetaceans in that it was created from images of fresh, postmortem brains in situ rather than extracted, formalin-fixed brains. The in situ images displayed the classic hallmarks of odontocete brains: fore-shortened orbital lobes and pronounced temporal width. Olfactory structures were absent and auditory regions (e.g., temporal lobes and inferior colliculi) were enlarged. In the subadult and fetal postmortem MRI scans, the hippocampus was identifiable, despite the relatively small size of this structure in cetaceans. The white matter tracts of the fetal hindbrain and cerebellum were pronounced, but in the telencephalon, the white matter tracts were much less distinct, consistent with less myelin. The white matter tracts of the auditory pathways in the fetal brains were myelinated, as shown by the T2 hypointensity signals for the inferior colliculus, cochlear nuclei, and trapezoid bodies. This finding is consistent with hearing and auditory processing regions maturing in utero in L. acutus, as has been observed for most mammals. In situ MRI scanning of fresh, postmortem specimens can be used not only to study the evolution and developmental patterns of cetacean brains but also to investigate the impacts of natural toxins (such as domoic acid), anthropogenic chemicals (such as polychlorinated biphenyls, polybrominated diphenyl ethers, and their hydroxylated metabolites), biological agents (parasites), and noise on the central nervous system of marine mammal species. Anat Rec, 2007. © 2007 Wiley-Liss, Inc. [source]


    Effects of Betamethasone Treatment on Central Myelination in Fetal Sheep: An Electron Microscopical Study

    ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2008
    C. Raschke
    Summary The long-term effect of betamethasone on the myelination of commissural and associational fibres was investigated in fetal sheep. We studied the corpus callosum and subcortical white matter by electron microscopy. Axons were subdivided into classes according to their axonal diameter: class I: ,0.65 ,m; class II: 0.66,0.84 ,m; class III: ,0.85 ,m. Under control conditions, the different functions of the white matter tracts examined were reflected by three morphological criteria: (1) there was a diverse percentage of axonal classes in the investigated areas. In corpus callosum the axons of class II predominate (47.1%). In the subcortical white matter, class I axons with small diameter are in majority (40.8%). (2) In the subcortical white matter more axons are present, with especially large diameter and hence of axonal class III. (3) The axons of subcortical white matter have thicker myelin sheaths than those of the corpus callosum. Betamethasone administration caused a significant decrease of class II axons in the corpus callosum (36.9%). In corpus callosum, axons of all classes present thicker myelin sheaths. Betamethasone administration resulted in a change in the formation of the myelin sheath in the commissural fibres of the corpus callosum but not in the associational fibres of the subcortical white matter. This could be the morphological correlate to behavioral and cognitive changes known to occur in humans after prenatal glucocorticoid treatment. [source]


    Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study

    BIPOLAR DISORDERS, Issue 3 2004
    Caleb M Adler
    Objectives:, Prefrontal white matter has been hypothesized to be integral to the pathophysiology of bipolar disorder. Recent morphometric studies however, have not observed changes in white matter in bipolar patients. We hypothesized that changes in prefrontal function in bipolar disorder, widely reported in the literature, may be related to a loss of white matter tract integrity with a resultant dysconnectivity syndrome. In this study we utilized diffusion tensor imaging (DTI) to examine prefrontal white matter in patients with bipolar disorder. Methods:, Nine patients with bipolar disorder and nine healthy controls were recruited. DTI and localizing anatomic data were acquired, and regions of interest (ROIs) identified in the prefrontal white matter at 15, 20, 25, and 30 mm superior to the anterior commissure (AC). Fractional anisotropy (FA) and trace apparent diffusion coefficient (TADC) were compared by ROI between study groups. Results:, The FA of ROIs 25 and 30 mm above the AC was significantly reduced in patients with bipolar disorder; FA of all ROIs showed high-medium to large effect sizes. No significant group differences were identified in TADC. Conclusions:, Our findings suggest that a loss of bundle coherence is present in prefrontal white matter. This loss of coherence may contribute to prefrontal cortical pathology in patients with bipolar disorder. [source]


    Cell Death Mechanisms Following Traumatic Brain Injury

    BRAIN PATHOLOGY, Issue 2 2004
    Ramesh Raghupathi PhD
    Neuronal and glial cell death and traumatic axonal injury contribute to the overall pathology of traumatic brain injury (TBI) in both humans and animals. In both head-injured humans and following experimental brain injury, dying neural cells exhibit either an apoptotic or a necrotic morphology. Apoptotic and necrotic neurons have been identified within contusions in the acute post-traumatic period, and in regions remote from the site of impact in the days and weeks after trauma, while degenerating oligodendrocytes and astrocytes have been observed within injured white matter tracts. We review and compare the regional and temporal patterns of apoptotic and necrotic cell death following TBI and the possible mechanisms underlying trauma-induced cell death. While excitatory amino acids, increases in intracellular calcium and free radicals can all cause cells to undergo apoptosis, in vitro studies have determined that neural cells can undergo apoptosis via many other pathways. It is generally accepted that a shift in the balance between pro- and anti-apoptotic protein factors towards the expression of proteins that promote death may be one mechanism underlying apoptotic cell death. The effect of TBI on cellular expression of survival promoting-proteins such as Bcl-2, Bcl-xL, and extracellular signal-regulated kinases, and death-inducing proteins such as Bax, c-Jun N-terminal kinase, tumor-suppressor gene, p53, and the calpain and caspase families of proteases are reviewed. In light of pharmacologic strategies that have been devised to reduce the extent of apoptotic cell death in animal models of TBI, our review also considers whether apoptosis may serve a protective role in the injured brain. Together, these observations suggest that cell death mechanisms may be representative of a continuum between apoptotic and necrotic pathways. [source]