Home About us Contact | |||
Maturation Strategies (maturation + strategy)
Selected AbstractsADAM-HCV, a new-concept diagnostic assay for antibodies to hepatitis C virus in serumFEBS JOURNAL, Issue 17 2001Olga Minenkova We screened phage libraries using sera from noninfected individuals and patients infected by hepatitis C virus (HCV). By applying different selection and maturation strategies, we identified a wide collection of efficient phage-borne ligands for HCV-specific antibodies. The selected ligands retained their antigenic properties when expressed as multimeric synthetic peptides. Peptides that mimic several immunodominant epitopes of the virus were used to develop a novel type of diagnostic assay which efficiently detects antibodies to HCV in serum. This type of analysis provides a conclusive diagnosis for many patients identified as indeterminate according to presently available serological assays. [source] Quantitative specificity-based display library screening identifies determinants of antibody-epitope binding specificity,PROTEIN SCIENCE, Issue 9 2009Sejal S. Hall Abstract Despite the critical importance of molecular specificity in bimolecular systems, in vitro display technologies have been applied extensively for affinity maturation of peptides and antibodies without explicitly measuring the specificity of the desired interaction. We devised a general strategy to measure, screen, and evolve specificity of protein ligand interactions analogous to widely used affinity maturation strategies. The specificity of binding to target and nontarget antibodies labeled with spectrally distinct fluorophores was measured simultaneously in protein mixtures via multiparameter flow cytometry, thereby enabling screening for high target antibody specificity. Isolated antibody specific ligands exhibited varying specificity, revealing critical amino acid determinants for target recognition and nontarget avoidance in complex mixtures. Molecular specificity in the mixture was further enhanced by quantitative directed evolution, yielding a family of epitopes exhibiting improved specificities equivalent, or superior to, the native peptide antigen to which the antibody was raised. Specificity screening simultaneously favored affinity, yielding ligands with three-fold improved affinity relative to the parent epitope. Quantitative specificity screening will be useful to screen, evolve, and characterize the specificity of protein and peptide interactions for molecular recognition applications. [source] Egg maturation strategy and its associated trade-offs: a synthesis focusing on LepidopteraECOLOGICAL ENTOMOLOGY, Issue 4 2005Mark A. Jervis Abstract., 1.,Insects vary considerably between and within orders, and even within the same genus, in the degree to which the female's lifetime potential egg complement is mature when she emerges as an adult. 2.,The ,ovigeny index' (OI) , the number of eggs females have ready to lay divided by the lifetime potential fecundity , quantifies variation in the degree of early life concentration of egg production, and also variation in initial reproductive effort. 3.,Here, an integrated set of hypotheses is presented, based on a conceptual model of resource allocation and acquisition, concerning trade-offs at the interspecific level between initial investment in egg production (as measured by OI) and other life-history traits in holometabolous insects. 4.,The evidence supporting each of these hypotheses is reviewed, and particular attention is paid to the Lepidoptera, as relevant life-history data are rapidly accumulating for this ecologically and economically important group. 5.,There is evidence at the interspecific level supporting: (i) a link between OI and a trade-off between soma and non-soma in Trichoptera and Hymenoptera (the proportionate allocation to soma decreases with increasing OI); (ii) a negative correlation between OI and dependency on external nutrient inputs (via adult feeding) in Hymenoptera and in Lepidoptera; (iii) a negative correlation between OI and the degree of polyandry (and nuptial gift, i.e. spermatophore, use) in Lepidoptera; (iv) negative correlations between OI and resource re-allocation capabilities (egg and thoracic musculature resorption) in Hymenoptera and in Lepidoptera; (v) a negative correlation between lifespan and OI in Trichoptera, Hymenoptera, and Lepidoptera, indicating a cost of reproduction; (vi) a link between winglessness and an OI of one in Lepidoptera; (vii) a negative correlation between OI and the degree of female mobility in winged Lepidoptera; and (viii) a negative correlation between OI and larval diet breadth (as mediated by oviposition strategy) in Lepidoptera. [source] Promoting ,-secretase cleavage of beta-amyloid with engineered proteolytic antibody fragmentsBIOTECHNOLOGY PROGRESS, Issue 4 2009Srinath Kasturirangan Abstract Deposition of beta-amyloid (A,) is considered as an important early event in the pathogenesis of Alzheimer's Disease (AD), and reduction of A, levels by various therapeutic approaches is actively being pursued. A potentially non-inflammatory approach to facilitate clearance and reduce toxicity is to hydrolyze A, at its ,-secretase site. We have previously identified a light chain fragment, mk18, with ,-secretase-like catalytic activity, producing the 1,16 and 17,40 amino acid fragments of A,40 as primary products, although hydrolysis is also observed following other lysine and arginine residues. To improve the specific activity of the recombinant antibody by affinity maturation, we constructed a single chain variable fragment (scFv) library containing a randomized CDR3 heavy chain region. A biotinylated covalently reactive analog mimicking ,-secretase site cleavage was synthesized, immobilized on streptavidin beads, and used to select yeast surface expressed scFvs with increased specificity for A,. After two rounds of selection against the analog, yeast cells were individually screened for proteolytic activity towards an internally quenched fluorogenic substrate that contains the ,-secretase site of A,. From 750 clones screened, the two clones with the highest increase in proteolytic activity compared to the parent mk18 were selected for further study. Kinetic analyses using purified soluble scFvs showed a 3- and 6-fold increase in catalytic activity (kcat/KM) toward the synthetic A, substrate compared to the original scFv primarily due to an expected decrease in KM rather than an increase in kcat. This affinity maturation strategy can be used to select for scFvs with increased catalytic specificity for A,. These proteolytic scFvs have potential therapeutic applications for AD by decreasing soluble A, levels in vivo. © 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009 [source] |