Matrix-assisted Laser Desorption/ionization (matrix-assisted + laser_ionization)

Distribution by Scientific Domains

Terms modified by Matrix-assisted Laser Desorption/ionization

  • matrix-assisted laser ionization mass spectrometry
  • matrix-assisted laser ionization time-of-flight
  • matrix-assisted laser ionization time-of-flight mass spectrometry

  • Selected Abstracts


    Comparison of two glutaraldehyde immobilization techniques for solid-phase tryptic peptide mapping of human hemoglobin by capillary zone electrophoresis and mass spectrometry

    ELECTROPHORESIS, Issue 9 2004
    Isabelle Migneault
    Abstract Stabilization of proteolytic enzymes, especially by immobilization, is of considerable interest because of their potential applications in medicine and the chemical and pharmaceutical industries. We report here a detailed comparison of two procedures for trypsin immobilization using the same homobifunctional agent, glutaraldehyde, for the purpose of peptide mapping. These methods include covalent coupling either to controlled pore glass (solid support) or via a cross-linking reaction (without any solid support). The immobilized trypsin preparations were characterized by the determination of immobilization efficiency, which ranged from 68 to > 95%, and measurement of apparent kinetic parameters toward a synthetic peptide-like substrate. Batch digestions of whole denaturated human normal adult hemoglobin (HbA) were performed to obtain peptide maps by capillary zone electrophoresis (CZE). Migration time reproducibility of the CZE maps was excellent, with a mean relative standard deviation of 1.5%. Moreover, the two immobilized enzyme preparations showed excellent reproducibility for repeated digestions. Matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry was also used for peptide mass mapping of denaturated HbA digested using the two immobilized trypsin preparations. Even though the two immobilized trypsin preparations do not behave identically, similar sequence coverages of 57% and 61% (for the two HbA chains merged) were achieved for the support-based and cross-linked trypsin preparations, respectively. [source]


    A sialylation study of mouse brain gangliosides by MALDI a-TOF and o-TOF mass spectrometry

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2008
    Mostafa Zarei
    Abstract Matrix-assisted laser desorption/ionization (MALDI) process of sialoglycoconjugates is generally accompanied by different levels of cleavage of sialic acid residues and/or by dehydration, and decarboxylation reactions. Quantitative densitometry of the mouse brain ganglioside (MBG) components separated by high-performance thin layer chromatography (HPTLC) and evidenced by orcinol staining was a basis to verify the ganglioside composition pattern with respect to the relative abundances of individual components in the mixture. A systematic mass spectrometry (MS) sialylation analysis has been carried out to evaluate the feasibility of an axial time-of-flight (a-TOF) MS, equipped with a vacuum MALDI source and an orthogonal-TOF (o-TOF) instrument with an ion source operated at about 1 mbar of N2. Besides, the esterification by one methyl group of the carboxyl group in sialic acid to increase the stability of the ganglioside species for MALDI MS analysis has been tested and the yield of intact ganglioside species and of the neutral loss of water and carbon dioxide estimated. For the sialylation analysis of native ganglioside mixtures the MALDI o-TOF analysis with 6-azo-2-thiothymine/diammonium citrate (ATT/DAC) as a matrix appears as an optimal approach for ganglioside profiling. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Matrix-assisted laser desorption/ionization collision-induced dissociation of linear single oligomers of nylon-6

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 10 2001
    Renata Murgasova
    Abstract Matrix-assisted laser desorption/ionization, collision induced-dissociation (MALDI-CID) has been used to obtain structural information for linear single oligomers of nylon-6. The effects of matrix and cationization agent in MALDI-CID analysis have been investigated. Fragmentation mechanisms are proposed for the series of ions that are observed in the MALDI-CID spectra of the hexamer, octamer and dodecamer. Fragmentation processes observed in the MALDI-CID spectra include cleavage of the end groups followed by dissociation of the m/z 113 unit. Cleavage of the oligamide chain occurs at the amide linkage, as well as at adjacent bonds. For the four matrices and three cationization agents investigated, 2,5-dihydroxybenzoic acid and sodium chloride showed the best performance for MALDI-CID analysis of the dodecamer. In addition, yields of the fragment ions in MALDI-CID spectra were found to be dependent on the chain length distribution. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Mass spectrometry for the study of protein glycation in disease

    MASS SPECTROMETRY REVIEWS, Issue 5 2006
    Toshimitsu Niwa
    Abstract The structural elucidation of advanced glycation end-product (AGE)-modified proteins and quantitative analysis of free AGEs have been successfully performed, by use of mass spectrometry (MS) in plasma and tissues of patients with AGE-related diseases, such as diabetes mellitus, uremia, cataract, and liver cirrhosis. Matrix-assisted laser desorption/ionization (MALDI)-MS made it possible to directly analyze the AGE-modified proteins such as albumin and IgG. However, because the direct structural analysis of intact AGE-modified proteins is often not easy due to the formation of broad and poorly resolved peaks, peptide mapping after enzymatic hydrolysis was introduced into the analysis of AGE-modified proteins and the site-specific analysis of defined AGEs by MALDI-MS. Liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) has been employed not only for the structural elucidation of enzymatically hydrolyzed AGEs-modified peptides but also for simultaneous quantification of free AGEs in plasma and tissues of patients. Based on many studies that use MS for the analysis of AGEs, there is no doubt as to the important role of protein-linked AGEs in several diseases. © 2006 Wiley-Liss, Inc. [source]


    Matrix-assisted laser desorption/ionization with untreated silicon targets

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 1 2009
    Jae-Kuk Kim
    No abstract is available for this article. [source]


    Matrix-assisted laser desorption/ionization directed nano-electrospray ionization tandem mass spectrometric analysis for protein identification

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2003
    Juergen Kast
    In those cases where the information obtained by peptide mass fingerprinting or matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) is not sufficient for unambiguous protein identification, nano-electrospray ionization (nano-ESI) and/or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis must be performed. The sensitivity of nano-ESI/MS, however, is lower than that of MALDI-MS, especially at very low analyte concentrations and/or in the presence of contaminants, such as salt and detergents. Moreover, to perform ESI-MS/MS, the peptide masses of the precursor ions must be known. The approach described in this paper, MALDI-directed nano-ESI-MS/MS, makes use of information obtained from the more sensitive MALDI-MS experiments in order to direct subsequent nano-ESI-MS/MS experiments. Peptide molecular ions found in the MALDI-MS analysis are then selected, as their (+2) precursor ions, for nano-ESI-MS/MS sequencing, even though these ions cannot be detected in the ESI-MS spectra. This method, originally proposed by Tempst et al. (Anal. Chem. 2000, 72: 777,790), has been extended to provide better sensitivity and shorter analysis times; also, a comparison with liquid chromatography/tandem mass spectrometry (LC/MS/MS) has been performed. These experiments, performed using quadrupole time-of-flight instruments equipped with commercially available nano-ESI sources, have allowed the unambiguous identification of in-gel digested proteins at levels below their ESI-MS detection limits, even in the presence of salts and detergents. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Investigation of cytolysin variants by peptide mapping: enhanced protein characterization using complementary ionization and mass spectrometric techniques

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2002
    Stanley M. Stevens Jr.
    Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) have been used in conjunction with time-of-flight (TOF) and quadrupole ion trap (IT) mass spectrometry, respectively, to analyze various cytolysin proteins isolated from the sea anemone Stichodactyla helianthus and digested by the protease trypsin. By employing different ionization methods, the subsequent changes in ionization selectivity for the peptides in the digested protein samples resulted in ion abundance variation reflected in the mass spectra. Upon investigation of this variation generated by the two ionization processes, it has been shown in this study that enhanced protein coverage (e.g., >95% for cytolysin III) can be achieved. Additionally, capillary and microbore reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with ESI mass spectrometry (MS) as well as flow injection analysis by nanoflow ESI-MS afforded the necessary limit of detection (LOD) for detailed structural information of the cytolysin proteins by tandem mass spectrometry (MS/MS) methods. It can be concluded that cytolysins II and III correspond to sticholysins I and II, that "cytolysin I" is a mixture of modified forms of cytolysins II and III, and that "cytolysin IV" is an incompletely processed precursor of cytolysin III. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Parental relationships among three grape varieties studied by MALDI of grape seed protein profiles,

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 9 2010
    Antonella Bertazzo
    Abstract Two Raboso cultivars, i.e. Raboso Veronese and Raboso Piave, are two black Vitis vinifera varieties. A genetic study suggested that Raboso Veronese is the progeny of a spontaneous cross between Raboso Piave and Marzemina Bianca cultivars. Parental relationships are usually investigated by genetic studies, which are effective to establish genetic links among different cultivars. Considering that proteome is the genome expression, in this article we evaluated the power of seed protein profiles obtained by matrix-assisted laser desorption/ionization (MALDI)/MS for parentage investigation. The three cultivars lead to very similar spectra with differences in the relative intensity of the most abundant species and the presence of very weak specific ions. In order to evaluate the analytical significance of these aspects, the variability due to instrumental factors and due to different harvesting areas and years of the same cultivars have been considered and measured by the calculation of discrepancy factor values. On one hand, the results obtained can be considered a valid confirmation of the genomic findings, whereas on the other hand, the results provide evidence for the ability of MALDI/MS to individuate minor differences in protein profiles of complex protein mixtures. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Molecular dynamics simulations of MALDI: laser fluence and pulse width dependence of plume characteristics and consequences for matrix and analyte ionization

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2010
    Richard Knochenmuss
    Abstract Molecular dynamics simulations of matrix-assisted laser desorption/ionization were carried out to investigate laser pulse width and fluence effects on primary and secondary ionization process. At the same fluence, short (35 or 350 ps) pulses lead to much higher initial pressures and ion concentrations than longer ones (3 ns), but these differences do not persist because the system relaxes toward local thermal equilibrium on a nanosecond timescale. Higher fluences accentuate the initial disparities, but downstream differences are not substantial. Axial velocities of ions and neutrals are found to span a wide range, and be fluence dependent. Total ion yield is only weakly dependent on pulse width, and consistent with experimental estimates. Secondary reactions of matrix cations with analyte neutrals are efficient even though analyte ions are ablated in clusters of matrix. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Laser desorption postionization for imaging MS of biological material

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 2 2010
    Artem Akhmetov
    Abstract Vacuum ultraviolet single photon ionization (VUV SPI) is a soft ionization technique that has the potential to address many of the limitations of matrix-assisted laser desorption/ionization (MALDI) for imaging MS. Laser desorption postionization (LDPI) uses VUV SPI for postionization and is experimentally analogous to a MALDI instrument with the addition of a pulsed VUV light source. This review discusses progress in LDPI-MS over the last decade, with an emphasis on imaging MS of bacterial biofilms, analytes whose high salt environment make them particularly resistant to imaging by MALDI-MS. This review first considers fundamental aspects of VUV SPI including ionization mechanisms, cross sections, quantum yields of ionization, dissociation and potential mass limits. The most common sources of pulsed VUV radiation are then described along with a newly constructed LDPI-MS instrument with imaging capabilities. Next, the detection and imaging of small molecules within intact biofilms is demonstrated by LDPI-MS using 7.87 eV (157.6 nm) VUV photons from a molecular fluorine excimer laser, followed by the use of aromatic tags for detection of selected species within the biofilm. The final section considers the future prospects for imaging intact biological samples by LDPI-MS. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    A convenient purification and preconcentration of peptides with ,-cyano-4-hydroxycinnamic acid matrix crystals in a pipette tip for matrix-assisted laser desorption/ionization mass spectrometry,

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2010
    Helena, ehulková
    Abstract Peptide samples derived from enzymatic in-gel digestion of proteins resolved by gel electrophoresis often contain high amount of salts originating from reaction and separation buffers. Different methods are used for desalting prior to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS), e.g. reversed-phase pipette tip purification, on-target washing, adding co-matrices, etc. As a suitable matrix for MALDI MS of peptides, ,-cyano-4-hydroxycinnamic acid (CHCA) is frequently used. Crystalline CHCA shows the ability to bind peptides on its surface and because it is almost insoluble in acidic water solutions, the on-target washing of peptide samples can significantly improve MALDI MS signals. Although the common on-target washing represents a simple, cheap and fast procedure, only a small portion of the available peptide solution is efficiently used for the subsequent MS analysis. The present approach is a combination of the on-target washing principle carried out in a narrow-end pipette tip (e.g. GELoader tip) and preconcentration of peptides from acidified solution by passing it through small CHCA crystals captured inside the tip on a glass microfiber frit. The results of MALDI MS analysis using CHCA-tip peptide preconcentration are comparable with the use of homemade POROS R2 pipette tip microcolumns. Advantages and limitations of this approach are discussed. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Modern MALDI time-of-flight mass spectrometry

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 3 2009
    Marvin L. Vestal
    Abstract This paper focuses on development of time-of-flight (TOF) mass spectrometry in response to the invention of matrix-assisted laser desorption/ionization (MALDI). Before this breakthrough ionization technique for nonvolatile molecules, TOF was generally considered as a useful tool for exotic studies of ion properties but was not widely applied to analytical problems. Improved TOF instruments and software that allow the full potential power of MALDI to be applied to difficult biological applications are described. A theoretical approach to the design and optimization of MALDI-TOF instruments for particular applications is presented. Experimental data are provided that are in excellent agreement with theoretical predictions of resolving power and mass accuracy. Data on sensitivity and dynamic range using kilohertz laser rates are also summarized. These results indicate that combinations of high-performance MALDI-TOF and TOF-TOF with off-line high-capacity separations may ultimately provide throughput and dynamic range several orders of magnitude greater than those currently available with electrospray LC-MS and MS-MS. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 2 2007
    M. Reid Groseclose
    Abstract A novel method for on-tissue identification of proteins in spatially discrete regions is described using tryptic digestion followed by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) with MS/MS analysis. IMS is first used to reveal the protein and peptide spatial distribution in a tissue section and then a serial section is robotically spotted with small volumes of trypsin solution to carry out in situ protease digestion. After hydrolysis, 2,5-Dihydroxybenzoic acid (DHB) matrix solution is applied to the digested spots, with subsequent analysis by IMS to reveal the spatial distribution of the various tryptic fragments. Sequence determination of the tryptic fragments is performed using on-tissue MALDI MS/MS analysis directly from the individual digest spots. This protocol enables protein identification directly from tissue while preserving the spatial integrity of the tissue sample. The procedure is demonstrated with the identification of several proteins in the coronal sections of a rat brain. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Effective detection of peptides containing cysteine sulfonic acid using matrix-assisted laser desorption/ionization and laser desorption/ionization on porous silicon mass spectrometry

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2006
    Tomoya Kinumi
    Abstract Cysteine sulfonic acid-containing peptides, being typical acidic peptides, exhibit low response in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. In this study, matrix conditions and the effect of diammonium hydrogencitrate (DAHC) as additive were investigated for ionization of cysteine sulfonic acid-containing peptides in MALDI. A matrix-free ionization method, desorption/ionization on porous silicon (DIOS), was also utilized to evaluate the effect of DAHC. When equimolar three-component mixtures of peptides carrying free cysteine, cysteine sulfonic acid, and carbamidomethyl cysteine were measured by MALDI using a common matrix, ,-cyano-4-hydroxycinnamic acid (CHCA), no signal corresponding to cysteine sulfonic acid-containing peptide could be observed in the mass spectrum. However, by addition of DAHC to CHCA, the peaks of cysteine sulfonic acid-containing peptides were successfully observed, as well as when using 2,4,6-trihydroxyacetophenone (THAP) and 2,6-dihydroxyacetophenone with DAHC. In the DIOS mass spectra of these analytes, the use of DAHC also enhanced the peak intensity of the cysteine sulfonic acid-containing peptides. On the basis of studies with these model peptides, tryptic digests of oxidized peroxiredoxin 6 were examined as a complex peptide mixture by MALDI and DIOS. In MALDI, the peaks of cysteine sulfonic acid-containing peptides were observed when using THAP/DAHC as the matrix, but this was not so with CHCA. In DIOS, the signal from cysteine sulfonic acid-containing peptides was suppressed; however, the use of DAHC significantly enhanced the signal intensity with an increase in the number of observed peptides and increased signal-to-noise ratio in the DIOS spectra. The results show that DAHC in the matrix or on the DIOS chip decreases discrimination and suppression effects in addition to suppressing alkali-adduct ions, which leads to a beneficial effect on protonation of peptides containing cysteine sulfonic acid. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Glycan side chains on naturally presented MHC class II ligands

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2005
    Jörn Dengjel
    Abstract The molecular characterization of unknown naturally presented major histocompatibility complex (MHC) class II glycopeptides carrying complex glycans has so far not been achieved, reflecting the different fragmentation characteristics of sugars and peptides in mass spectrometric analysis. Human leukocyte antigen (HLA)-DR-bound peptides were isolated by affinity purification, separated via high performance liquid chromatography and analyzed by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. We were able to identify two naturally processed MHC class II ligands, CD53122,136 and CD53121,136, carrying complex N -linked glycan side chains by a combination of in-source and collision-induced fragmentation on a quadrupole time-of-flight tandem mass spectrometer. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry: localization of the active site serine,

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 12 2004
    Martin Zehl
    Abstract A chemical modification approach combined with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was used to identify the active site serine residue of an extracellular lipase from Streptomyces rimosus R6-554W. The lipase, purified from a high-level overexpressing strain, was covalently modified by incubation with 3,4-dichloroisocoumarin, a general mechanism-based serine protease inhibitor. MALDI time-of-flight (TOF) mass spectrometry was used to probe the nature of the intact inhibitor-modified lipase and to clarify the mechanism of lipase inhibition by 3,4-dichloroisocoumarin. The stoichiometry of the inhibition reaction revealed that specifically one molecule of inhibitor was bound to the lipase. The MALDI matrix 2,6-dihydroxyacetophenone facilitated the formation of highly abundant [M + 2H]2+ ions with good resolution compared to other matrices in a linear TOF instrument. This allowed the detection of two different inhibitor-modified lipase species. Exact localization of the modified amino acid residue was accomplished by tryptic digestion followed by low-energy collision-induced dissociation peptide sequencing of the detected 2-(carboxychloromethyl)benzoylated peptide by means of a MALDI quadrupole ion trap reflectron TOF instrument. The high sequence coverage obtained by this approach allowed the confirmation of the site specificity of the inhibition reaction and the unambiguous identification of the serine at position 10 as the nucleophilic amino acid residue in the active site of the enzyme. This result is in agreement with the previously obtained data from multiple sequence alignment of S. rimosus lipase with different esterases, which indicated that this enzyme exhibits a characteristic Gly-Asp-Ser-(Leu) motif located close to the N-terminus and is harboring the catalytically active serine residue. Therefore, this study experimentally proves the classification of the S. rimosus lipase as GDS(L) lipolytic enzyme. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Characterization by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry of the major photoproducts of temoporfin (m -THPC) and bacteriochlorin (m -THPBC)

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 7 2001
    Marc Angotti
    Abstract The photobleaching of 5,10,15,20-tetrakis(m -hydroxyphenyl)chlorin (temoporfin, m -THPC) and 5,10,15,20-tetrakis(m -hydroxyphenyl)bacteriochlorin (bacteriochlorin, m -THPBC) was studied in ethanol,water (1 : 99, v/v) and in physiological medium (phosphate-buffered saline, PBS) with or without fetal calf serum (FCS). m -THPC solution was irradiated with the laser radiation of 650 nm, whereas m -THPBC solution underwent two consecutive irradiations at 532 and 650 nm. The photoproducts were characterized by UV,visible absorption spectrophotometry and by matrix-assisted laser desorption/ionization (MALDI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Independent of the solvent used, the phototransformation of either photosensitizer yielded the formation of 5,10,15,20-tetrakis (m -hydroxyphenyl)porphyrin (m -THPP) through a major dehydrogenation process. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Investigation of tyrosine nitration in proteins by mass spectrometry

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2001
    Ann-Sofi Petersson
    Abstract In vivo nitration of tyrosine residues is a post-translational modification mediated by peroxynitrite that may be involved in a number of diseases. The aim of this study was to evaluate possibilities for site-specific detection of tyrosine nitration by mass spectrometry. Angiotensin II and bovine serum albumin (BSA) nitrated with tetranitromethane (TNM) were used as model compounds. Three strategies were investigated: (i) analysis of single peptides and protein digests by matrix-assisted laser desorption/ionization (MALDI) peptide mass mapping, (ii) peptide mass mapping by electrospray ionization (ESI) mass spectrometry and (iii) screening for nitration by selective detection of the immonium ion of nitrotyrosine by precursor ion scanning with subsequent sequencing of the modified peptides. The MALDI time-of-flight mass spectrum of nitrated angiotensin II showed an unexpected prompt fragmentation involving the nitro group, in contrast to ESI-MS, where no fragmentation of nitrated angiotensin II was observed. The ESI mass spectra showed that mono- and dinitrated angiotensin II were obtained after treatment with TNM. ESI-MS/MS revealed that the mononitrated angiotensin II was nitrated on the side-chain of tyrosine. The dinitrated angiotensin II contained two nitro groups on the tyrosine residue. Nitration of BSA was confirmed by Western blotting with an antibody against nitrotyrosine and the sites for nitration were investigated by peptide mass mapping after in-gel digestion. Direct mass mapping by ESI revealed that two peptides were nitrated. Precursor ion scanning for the immonium ion for nitrotyrosine revealed two additional partially nitrated peptides. Based on the studies with the two model compounds, we suggest that the investigation of in vivo nitration of tyrosine and identification of nitrated peptides might be performed by precursor ion scanning for the specific immonium ion at m/z 181.06 combined with ESI-MS/MS for identification of the specific nitration sites. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Electrospray and matrix-assisted laser desorption/ionization mass spectral characterization of linear single nylon-6 oligomers

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 2 2001
    Lu Shan
    Abstract Synthetic nylon-6 single molecular mass oligomers were studied by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry. These oligomers, considered as model compounds for the study of nylon-6 polymers, gave good mass spectrometric results using both MALDI and ESI. In spite of the gentle nature of both techniques, the MALDI and ESI spectra showed evidence of end-group cleavage from the oligomer chains. MALDI-MS was found to give similar fragmentation patterns for all of the oligomer samples. An increase in doubly charged ion signals with increasing oligomer mass was observed in the ESI mass spectra, as was end-group fragmentation. Signals from oligomer clusters were observed in ESI-MS for the dimer, tetramer and hexamer, most likely due to non-covalent bonding among the low-mass oligomer molecules. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Profiling of neuropeptides released at the stomatogastric ganglion of the crab, Cancer borealis with mass spectrometry

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2005
    Cyrus P. Billimoria
    Abstract Studies of release under physiological conditions provide more direct data about the identity of neuromodulatory signaling molecules than studies of tissue localization that cannot distinguish between processing precursors and biologically active neuropeptides. We have identified neuropeptides released by electrical stimulation of nerves that contain the axons of the modulatory projection neurons to the stomatogastric ganglion of the crab, Cancer borealis. Preparations were bathed in saline containing a cocktail of peptidase inhibitors to minimize peptide degradation. Both electrical stimulation of projection nerves and depolarization with high K+ saline were used to evoke release. Releasates were desalted and then identified by mass using MALDI,TOF (matrix-assisted laser desorption/ionization,time-of-flight) mass spectrometry. Both previously known and novel peptides were detected. Subsequent to electrical stimulation proctolin, Cancer borealis tachykinin-related peptide (CabTRP), FVNSRYa, carcinustatin-8, allatostatin-3 (AST-3), red pigment concentrating hormone, NRNFLRFa, AST-5, SGFYANRYa, TNRNFLRFa, AST-9, orcomyotropin-related peptide, corazonin, Ala13-orcokinin, and Ser9-Val13-orcokinin were detected. Some of these were also detected after high K+ depolarization. Release was calcium dependent. In summary, we have shown release of the neuropeptides thought to play an important neuromodulatory role in the stomatogastric ganglion, as well as numerous other candidate neuromodulators that remain to be identified. [source]


    Synthesis and characterization of macrocyclic vinyl aromatic polymers

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2006
    Thieo E. Hogen-Esch
    Abstract The synthesis and characterization by size exclusion chromatography, liquid chromatography, NMR, matrix-assisted laser desorption/ionization, thermal analysis, and other techniques of well-defined and narrow molecular weight distribution macrocyclic polystyrene (PS), poly(2-vinylpyridine), poly(,-methylstyrene), poly (2-vinyl-naphthalene) (P2VN), and poly(9,9-dimethyl-2-vinylfluorene) (PDMVF) containing a single 1,4-benzylidene, methylidene, or 9,10-anthracenylidene unit are reviewed. The absorption and emission spectroscopy of PS, P2VN, and PDMVF is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2139,2155, 2006 [source]


    Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999,2000

    MASS SPECTROMETRY REVIEWS, Issue 4 2006
    David J. Harvey
    Abstract This review describes the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates and continues coverage of the field from the previous review published in 1999 (D. J. Harvey, Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates, 1999, Mass Spectrom Rev, 18:349,451) for the period 1999,2000. As MALDI mass spectrometry is acquiring the status of a mature technique in this field, there has been a greater emphasis on applications rather than to method development as opposed to the previous review. The present review covers applications to plant-derived carbohydrates, N- and O- linked glycans from glycoproteins, glycated proteins, mucins, glycosaminoglycans, bacterial glycolipids, glycosphingolipids, glycoglycerolipids and related compounds, and glycosides. Applications of MALDI mass spectrometry to the study of enzymes acting on carbohydrates (glycosyltransferases and glycosidases) and to the synthesis of carbohydrates, are also covered. © 2006 Wiley Periodicals, Inc., Mass Spec Rev 25:595,662, 2006 [source]


    Discovering new invertebrate neuropeptides using mass spectrometry

    MASS SPECTROMETRY REVIEWS, Issue 1 2006
    Amanda B. Hummon
    Abstract Neuropeptides are a complex set of messenger molecules controlling a wide array of regulatory functions and behaviors within an organism. These neuromodulators are cleaved from longer protein molecules and often experience numerous post-translational modifications to achieve their bioactive form. As a result of this complexity, sensitive and versatile analysis schemes are needed to characterize neuropeptides. Mass spectrometry (MS) through a variety of approaches has fueled the discovery of hundreds of neuropeptides in invertebrate species in the last decade. Particularly successful are direct tissue and single neuron analyses by matrix-assisted laser desorption/ionization (MALDI) MS, which has been used to elucidate approximately 440 neuropeptides, and examination of neuronal homogenates by electrospray ionization techniques (ESI), also leading to the characterization of over 450 peptides. Additional MS methods with great promise for the discovery of neuropeptides are MS imaging and large-scale peptidomics studies in combination with a sequenced genome. © 2005 Wiley Periodicals, Inc. [source]


    Structural characterization of human general transcription factor TFIIF in solution

    PROTEIN SCIENCE, Issue 3 2008
    Satoko Akashi
    Abstract Human general transcription factor IIF (TFIIF), a component of the transcription pre-initiation complex (PIC) associated with RNA polymerase II (Pol II), was characterized by size-exclusion chromatography (SEC), electrospray ionization mass spectrometry (ESI-MS), and chemical cross-linking. Recombinant TFIIF, composed of an equimolar ratio of , and , subunits, was bacterially expressed, purified to homogeneity, and found to have a transcription activity similar to a natural one in the human in vitro transcription system. SEC of purified TFIIF, as previously reported, suggested that this protein has a size >200 kDa. In contrast, ESI-MS of the purified sample gave a molecular size of 87 kDa, indicating that TFIIF is an ,, heterodimer, which was confirmed by matrix-assisted laser desorption/ionization (MALDI) MS of the cross-linked TFIIF components. Recent electron microscopy (EM) and photo-cross-linking studies showed that the yeast TFIIF homolog containing Tfg1 and Tfg2, corresponding to the human , and , subunits, exists as a heterodimer in the PIC, so the human TFIIF is also likely to exist as a heterodimer even in the PIC. In the yeast PIC, EM and photo-cross-linking studies showed different results for the mutual location of TFIIE and TFIIF along DNA. We have examined the direct interaction between human TFIIF and TFIIE by ESI-MS, SEC, and chemical cross-linking; however, no direct interaction was observed, at least in solution. This is consistent with the previous photo-cross-linking observation that TFIIF and TFIIE flank DNA separately on both sides of the Pol II central cleft in the yeast PIC. [source]


    Imaging mass spectrometry for examining localization of polymeric composition in matrix-assisted laser desorption/ionization samples

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2009
    Steffen M. Weidner
    The localization of polymeric composition in samples prepared for matrix-assisted laser desorption/ionization (MALDI) analysis has been investigated by imaging mass spectrometry. Various matrices and solvents were used for sample spot preparation of a polybutyleneglycol (PBG 1000). It was shown that in visibly homogeneous spots, prepared using the ,dried droplet' method, separation between matrix and polymer takes place. Moreover, using , -cyano-4-hydroxycinnamic acid (CCA) as matrix and methanol as solvent molecular mass separation of the polymer homologues in the spots was detectable. In contrast to manually spotted samples, dry spray deposition results in homogeneous layers showing no separation effects. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    The effect of laser profile, fluence, and spot size on sensitivity in orthogonal-injection matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2008
    Hui Qiao
    The influence of incident laser parameters on sensitivity in matrix-assisted laser desorption/ionization (MALDI) has been investigated using orthogonal-injection time-of-flight (TOF) instruments. A qualitative comparison was first made between the beam profiles obtained with a N2 laser and a Nd:YAG laser using 2-m long optical fibers. The N2 laser gives better sensitivity, consistent with a more uniform fluence distribution and therefore better coverage of the N2 laser profile. Most of the difference disappears when a 30-m long fiber is used or when the fibers are twisted during irradiation to smooth out the fluence distribution. In more systematic measurements, the total integrated ion yield from a single spot (a measure of sensitivity) was found to increase rapidly with fluence to a maximum, and then saturate or decrease slightly. Thus, the optimum sensitivity is achieved at high fluence. For a fluence near threshold, the integrated yield has a steep (cubic) dependence on the spot size, but the yield saturates at higher fluence for smaller spots. The area dependence is much weaker (close to linear) for fluence values above saturation, with the result that the highest integrated yields per unit area are obtained with the smallest spot sizes. The results have particular relevance for imaging MALDI, where sensitivity and spatial resolution are important figures of merit. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Comparison of mass spectra of peptides in different matrices using matrix-assisted laser desorption/ionization and a multi-turn time-of-flight mass spectrometer, MULTUM-IMG

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2008
    Hisanao Hazama
    The mass spectra of peptides obtained with different matrices were compared using a matrix-assisted laser desorption/ionization (MALDI) ion source and a multi-turn time-of-flight (TOF) mass spectrometer, MULTUM-IMG, which has been developed at Osaka University. Two types of solid matrices, , -cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), and a liquid matrix made from a mixture of 3-aminoquinoline and CHCA were used. When measuring the peak signal intensity of human angiotensin II [M+H]+ from a fixed sample position, the liquid matrix produced a stable signal over 1000 laser shots, while the signal obtained with CHCA and DHB decayed after about 300 and 100 shots, respectively. Significant differences in the mass resolving power were not observed between the spectra obtained with the three matrices. Signal peak areas were measured as a function of the cycle number in a multi-turn ion trajectory, i.e., the total flight time over a millisecond time scale. For both [M+H]+ of human angiotensin II and bovine insulin, the decay of the signal peak area was the most significant with CHCA, while that measured with DHB was the smallest. The results of the mean initial ion velocity measurements suggested that the extent of metastable decomposition of the analyte ions increased in order of DHB, the liquid matrix, and CHCA, which is consistent with the difference in the decay of the signal peak area as the total flight time increased. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Linkage position and residue identification of disaccharides by tandem mass spectrometry and linear discriminant analysis

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2008
    Hui Zhang
    The discrimination of isomeric disaccharides with different linkage types and different monosaccharide residues , glucose (Glc), galactose (Gal), and mannose (Man) at the non-reducing end , was investigated with tandem mass spectrometry (MS/MS) and linear discriminant analysis (LDA). Conventional matrix-assisted laser desorption/ionization (MALDI)-MS has strong interference peaks from matrix ions in the low mass region (<500,Da). This greatly limits the application of MALDI-MS for the analysis of small molecules such as saccharides. We solved this problem by using LDI with acidic fullerene matrix, which gives a very clean background in the low-mass region. Disaccharides with different linkage types give different tandem mass spectral profiles from various cross-ring fragmentation pathways. Disaccharides with the same linkage type but with three different kinds of monosaccharide residues bear the same fragmentation profiles. However, the relative ratios of the fragment ion intensities were found to be distinctly different among the three disaccharide isomers. By employing statistical tools such as LDA to classify the tandem mass spectra, disaccharide isomers with either different linkages or different monosaccharide residues were successfully classified. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Role of the support material on laser desorption/ionization mass spectra

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 7 2008
    A. Gruszecka
    We report the results of experimental studies on the effects of sample supports in laser desorption/ionization mass spectrometry (LDI-MS). LDI time-of-flight (TOF) mass spectra obtained for C60 and insulin samples deposited onto standard stainless steel substrate and/or onto some non-metallic materials (glass, scotch tape, floppy disc foil, Teflon foil, photocopy film), all recorded under identical, typical experimental conditions, have been compared with regard to their intensity and quality. The LDI investigations show that compared with stainless steel, glass and floppy disc foil sample supports boost (2,3.5 times) ion yields for C and C ions, respectively. The stainless steel and scotch tape sample supports are the best for the mass resolution of positive ions and the formation of (C60) (n,,,4) cluster ions, respectively. In the case of detection of insulin by matrix-assisted laser desorption/ionization (MALDI) we did not observe significant differences in sensitivity for the support materials tested. A mechanism of ion formation in the desorption plume is suggested. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry,

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2006
    Jeremy E. Melanson
    Here we report the first application of a matrix-assisted laser desorption/ionization (MALDI) triple-quadrupole mass spectrometer for targeted proteomics. Employing an amine-specific isotopic labelling approach, the technique was validated using five randomly selected bovine serum albumin peptides differentially labelled at known ratios. An indirect benefit of the isotopic labelling technique is a significant enhancement of the a1 ion in tandem mass (MS/MS) spectra of all peptides studied. Therefore, the a1 ion was selected as the fragment ion for multiple reaction monitoring (MRM) in all cases, eliminating tedious method development and optimization. Accurate quantification was achieved with an average relative standard deviation (RSD) of 5% (n,=,5) and a detection limit of 14,amol. The technique was then applied to validate an important virulence biomarker of the fungal pathogen Candida albicans, which was not accurately quantified using global proteomics experiment employing two-dimensional liquid chromatography/electrospray ionization tandem mass spectrometry (2D-LC/ESI)-MS/MS. Using LC/MALDI-MRM analysis of five tryptic peptides, the protein PHR1 was found to be upregulated in the hyphal (pathogenic) form of C. albicans by a factor of 7.7,±,0.8. Copyright © 2006 John Wiley & Sons, Ltd. [source]