Home About us Contact | |||
Matrix-assisted Laser Desorption/ionisation Time-of-flight Mass Spectrometry (matrix-assisted + laser_desorption_time-of-flight_mass_spectrometry)
Selected AbstractsRapid identification of differentiation markers from whole epithelial cells by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and statistical analysisRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 8 2008Laure F. Marvin-Guy Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) was applied to identify markers for cellular differentiation. The differentiation of a human colon epithelial carcinoma T84 cell line was monitored over a period of 28 days by transepithelial electrical resistance (TER) measurements, alkaline phosphatase (AP) assay, and MALDI-TOF mass spectral fingerprints combined with statistical analysis. MALDI-MS generated specific mass spectral fingerprints characteristic of cell differentiation. Twenty-two ions were selected as diagnostic signals of fully differentiated T84 cells. Ten protein ion signals, detected by MALDI-MS and validated by statistical analysis, were proposed as T84 cell differentiation markers. Among these signals, ubiquitin was identified as a T84 cell differentiation marker by nanospray liquid chromatography/tandem mass spectrometry (nanoLC/MS/MS). Moreover, depending on the concentration of the cells seeded on the growth support, it was possible to predict the timing of the exponential phase and of cellular differentiation by MALDI-MS-derived marker ions. MALDI-TOFMS was compared to other methods for the determination of cellular differentiation: TER measurements are rapid but yield limited information as to the cellular differentiation state. AP assays are more specific for the differentiation state but take more time. By contrast, MALDI-MS has been found to be a fast, sensitive and precise method for cell differentiation assessment and provides the opportunity for multiplexing and high throughput. Moreover, the consumable costs per assay are very low. Copyright © 2008 John Wiley & Sons, Ltd. [source] Identification of four low molecular and water-soluble proteins from grape (Vitis vinifera L.) seedsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2010Ting Zhou Summary Profiles of soluble proteins isolated from mature seeds of grape (Vitis vinifera L.) pomace were studied using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI,TOF,MS). Two-dimensional gels stained with Coomassie brilliant blue revealed more than fifty protein spots. Four abundant protein spots showing low molecular weight (Mr) and wide isoelectric point (pI) were analysed by MALDI,TOF,MS, resulting in their identification. Taken together, these results suggest that identified proteins may be linked to seed development and metabolism, but more instructive is that they have some potential functions for future food application. These results provide some insights into conversion of grape processing wastes into useful products or even as raw material for other industries. [source] Cranberry proanthocyanidins associate with low-density lipoprotein and inhibit in vitro Cu2+ -induced oxidation,JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 14 2001Mandy L Porter Abstract Antioxidant activity of six fractions of cranberry phenolic compounds was determined by inhibition of Cu2+ -induced low-density lipoprotein (LDL) oxidation. The phenolic composition of each fraction was determined by high-performance liquid chromatography. The phenolic fractions were mixed with aliquots of modified human serum prior to LDL isolation. The serum was modified to remove very-low-density lipoprotein and chylomicrons that may bind phenolic compounds. Only fractions 5 and 6 that contained proanthocyanidins (PAs) significantly increased the lag time of LDL oxidation, and the lag time for fraction 6 was significantly higher than for fraction 5. The mass distribution of PAs in these fractions was obtained by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, a technique that allows rapid characterisation of the molecular weight distribution in mixtures of oligomeric compounds. Fraction 5 contained trimers through heptamers, whereas fraction 6 contained pentamers through nonamers. In addition, fraction 6 contained PA oligomers with more doubly linked, A-type interflavan bonds. Results indicate that PAs specifically associate with LDL in modified serum and increase the lag time of Cu2+ -induced oxidation. Differences between fractions 5 and 6 in PA structure and effects on LDL oxidation suggest that the degree of polymerisation and the nature of the interflavan bond influence antioxidant properties. © 2001 Society of Chemical Industry [source] Fractionation of grape tannins and analysis by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometryPHYTOCHEMICAL ANALYSIS, Issue 4 2003Camille Perret Abstract Polymeric tannins, extracted from grape berries (Gamay variety), were fractionated according to their mean degree of polymerisation (mDP) on a styrene,divinylbenzene phase eluted with a gradient of methanol:chloroform. Increasing the percentage of methanol led to the solubilisation of higher molecular weight tannins. The mean mDP of each collected fraction was determined by acid-catalysed degradation in the presence of a nucleophilic reagent. The fractionation method produced a linear gradient of mDP varying between 1.84 and 19.34. The fractions were partially characterised by matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). The spectra showed a complex mixture of proanthocyanidins and galloylated proanthocyanidins up to 4000,amu. Copyright © 2003 John Wiley & Sons, Ltd. [source] Rapid identification of differentiation markers from whole epithelial cells by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and statistical analysisRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 8 2008Laure F. Marvin-Guy Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) was applied to identify markers for cellular differentiation. The differentiation of a human colon epithelial carcinoma T84 cell line was monitored over a period of 28 days by transepithelial electrical resistance (TER) measurements, alkaline phosphatase (AP) assay, and MALDI-TOF mass spectral fingerprints combined with statistical analysis. MALDI-MS generated specific mass spectral fingerprints characteristic of cell differentiation. Twenty-two ions were selected as diagnostic signals of fully differentiated T84 cells. Ten protein ion signals, detected by MALDI-MS and validated by statistical analysis, were proposed as T84 cell differentiation markers. Among these signals, ubiquitin was identified as a T84 cell differentiation marker by nanospray liquid chromatography/tandem mass spectrometry (nanoLC/MS/MS). Moreover, depending on the concentration of the cells seeded on the growth support, it was possible to predict the timing of the exponential phase and of cellular differentiation by MALDI-MS-derived marker ions. MALDI-TOFMS was compared to other methods for the determination of cellular differentiation: TER measurements are rapid but yield limited information as to the cellular differentiation state. AP assays are more specific for the differentiation state but take more time. By contrast, MALDI-MS has been found to be a fast, sensitive and precise method for cell differentiation assessment and provides the opportunity for multiplexing and high throughput. Moreover, the consumable costs per assay are very low. Copyright © 2008 John Wiley & Sons, Ltd. [source] Sample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of partially depolymerised carboxymethyl celluloseRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2003Dane Momcilovic Sample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) of partially depolymerised carboxymethyl cellulose (CMC) have been investigated. The depolymerisation was either enzymatic or acidic. Fractions of enzymatically depolymerised CMC were collected from size-exclusion chromatography (SEC) and further investigated by MALDI-TOFMS. 2,5-Dihydroxybenzoic acid was used as matrix, dissolved in H2O due to the poor solubility of CMC in suitable organic solvents. The samples were dried by two methods, in ambient atmosphere and at reduced pressure. Under reduced pressure the sample spot homogeneity increased. This drying method, however, produced additional adduct peaks in the mass spectra originating from ion exchange on the CMC oligomers. Analysis of CMC could be performed in both negative and positive ion modes. Mass discrimination and variation in ionisation efficiency were demonstrated by comparing mass spectra with SEC data. Measurements of the degree of substitution (DS) were performed on three CMCs with different DS values, which were depolymerised in trifluoroacetic acid. The three CMCs were easily distinguished from one another, but the obtained DS values deviated from the values supplied by the manufacturer. Copyright © 2003 John Wiley & Sons, Ltd. [source] Sample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of partially depolymerised methyl celluloseRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2003Dane Momcilovic Methyl cellulose (MC) was partially depolymerised and the oligomers thus obtained were studied by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The depolymerisation was either enzymatic or acidic. Fractions of enzymatically depolymerised MC were collected from size-exclusion chromatography and subjected to a sample preparation investigation. Several MALDI matrices and solvents were evaluated. The results showed that the solvent choice had a significant effect on the measured degree of substitution (DS). Aprotic solvents produced higher DS values, which was most likely due to poor solubility of species with low DS. The obtained signal intensity, however, did not correlate with the solubility but seemed to be more dependent on certain matrix/solvent combinations. All the matrices attempted produced mass spectra with sufficient signal intensity for accurate peak area calculation. The choice of matrix did not have any significant effect on the measured DS. Sample spots obtained from organic solvents had a more homogeneous distribution of the analyte and smaller crystals than those obtained from water. This increased both the reproducibility and peak resolution and in addition the analysis time was shorter. DS measurements were performed on two acidically depolymerised MCs with different nominal DS values. It was easy to distinguish between the two MCs, and the measured DS values agreed well with the values supplied by the manufacturers. Copyright © 2003 John Wiley & Sons, Ltd. [source] Determination of wheat quality by mass spectrometry and multivariate data analysisRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 21 2002David Mark Gottlieb Multivariate analysis has been applied as support to proteome analysis in order to implement an easier and faster way of data handling based on separation by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. The characterisation phase in proteome analysis by means of simple visual inspection is a demanding process and also insecure because subjectivity is the controlling element. Multivariate analysis offers, to a considerable extent, objectivity and must therefore be regarded as a neutral way to evaluate results obtained by proteome analysis. Proteome analysis of storage proteins from the wheat gluten complex based on two-dimensional electrophoresis and analysis of the N-terminal sequence has revealed a protein homologous to ,-gliadins, tentatively associated with quality and within the molecular weight range 27,35,kDa. Further examinations of gliadin data based on mass spectrometry revealed that quality among wheat varieties could be determined by means of principal component analysis. Further examinations by interval partial least squares made it possible to encircle an overall optimal molecular weight interval from 31.5 to 33.7,kDa. The use of multivariate analysis on data from mass spectrometry has thus shown to be a promising technique to minimize the number of two-dimensional gels within the field of proteome analysis. Copyright © 2002 John Wiley & Sons, Ltd. [source] Variety identification of wheat using mass spectrometry with neural networks and the influence of mass spectra processing prior to neural network analysisRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2002Helle Aagaard Sørensen The performance of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks in wheat variety classification is further evaluated.1 Two principal issues were studied: (a) the number of varieties that could be classified correctly; and (b) various means of pre-processing mass spectrometric data. The number of wheat varieties tested was increased from 10 to 30. The main pre-processing method investigated was based on Gaussian smoothing of the spectra, but other methods based on normalisation procedures and multiplicative scatter correction of data were also used. With the final method, it was possible to classify 30 wheat varieties with 87% correctly classified mass spectra and a correlation coefficient of 0.90. Copyright © 2002 John Wiley & Sons, Ltd. [source] |