Matrix Proteoglycans (matrix + proteoglycan)

Distribution by Scientific Domains


Selected Abstracts


Mechanical strain increases cytokine and chemokine production in bronchial fibroblasts from asthmatic patients

ALLERGY, Issue 1 2009
F. Le Bellego
Background:, Mechanical strain and cytokine stimulation are two important mechanisms leading to airway remodeling in asthma. The effect of mechanical strain on cytokine secretion in airway fibroblasts is not known. The aim of this study was to determine whether bronchial and nasal fibroblasts differentially alter cytokine secretion in response to mechanical strain. Methods:, We measured secretion of the pro-fibrotic cytokine, interleukin-6 (IL-6), and the pro-inflammatory cytokines, IL-8 and monocyte chemotactic protein 1, before and after mechanical strain in bronchial fibroblasts obtained from asthmatic patients [asthmatic bronchial fibroblasts (BAF)] and normal volunteers [normal bronchial fibroblasts (BNF)], and in nasal fibroblasts (NF) obtained from nasal polyps. Cells were grown on flexible membranes and a mechanical strain of 30% amplitude, 1 Hz frequency was applied for 3, 6 and 24 h. Control cells were unstrained. IL-6, IL-8 and monocyte chemotactic protein 1 was measured after 24 h strain using enzyme-linked immunoassay; mRNA was measured by real time polymerase chain reaction. We also measured mRNA for versican, a matrix proteoglycan, known to be upregulated in the asthmatic airway wall. Results:, In unstrained conditions, no differences in cytokine secretion were observed. After 24 h strain, BAF secreted more IL-6 than BNF. Mechanical strain increased IL-8 mRNA in BAF, BNF and NF; and IL-6 and versican mRNA, in BAF, only. Conclusions:, Cytokine responses to mechanical strain varied in different airway fibroblast populations, and depended on the site of origin, and the underlying inflammatory state. Strain resulted in IL-6 upregulation and increased message for extracellular matrix protein in bronchial fibroblasts from asthmatic patients only, and may reflect these patients' propensity for airway remodeling. [source]


Versican expression during skeletal/joint morphogenesis and patterning of muscle and nerve in the embryonic mouse limb

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2005
Holly E. Snow
Abstract Versican, an extracellular matrix proteoglycan, has been implicated in limb development and is expressed in precartilage mesenchymal condensations. However, studies have lacked precise spatial and temporal investigation of versican localization during skeletogenesis and its relationship to patterning of muscle and nerve during mammalian limb development. The transgenic mouse line hdf (heart defect), which bears a lacZ reporter construct disrupting Cspg2 encoding versican, allowed ready detection of hdf transgene expression through histochemical analysis. Hdf transgene expression in whole mount heterozygous embryos and localization of versican relative to cartilage, muscle, and nerve tissues in paraffin-embedded limb sections of wild-type embryos from 10.5,14 days postcoitum were evaluated by lacZ histochemistry, immunohistochemistry, and in situ hybridization. Versican was localized within precartilage condensations and nascent cartilages with expression diminishing during maturation of the cartilage model at later time points. Interestingly, versican remained highly expressed in developing synovial joint interzones, suggesting potential function for versican in joint morphogenesis. Isolated myoblasts, incipient skeletal muscle masses, and neurites were not present in areas of strong versican expression within the developing limb. Versican-expressing tissues may reserve space for the future limb skeleton and developing joints and may aid in patterning of muscle and nerve by deterring muscle migration and innervation into these regions. © 2005 Wiley-Liss, Inc. [source]


Gene deletion of either interleukin-1,, interleukin-1,,converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy

ARTHRITIS & RHEUMATISM, Issue 12 2003
Kristen M. Clements
Objective To investigate the development of osteoarthritis (OA) after transection of the medial collateral ligament and partial medial meniscectomy in mice in which genes encoding either interleukin-1, (IL-1,), IL-1,,converting enzyme (ICE), stromelysin 1, or inducible nitric oxide synthase (iNOS) were deleted. Methods Sectioning of the medial collateral ligament and partial medial meniscectomy were performed on right knee joints of wild-type and knockout mice. Left joints served as unoperated controls. Serial histologic sections were obtained from throughout the whole joint of both knees 4 days or 1, 2, 3, or 4 weeks after surgery. Sections were graded for OA lesions on a scale of 0,6 and were assessed for breakdown of tibial cartilage matrix proteoglycan (aggrecan) and type II collagen by matrix metalloproteinases (MMPs) and aggrecanases with immunohistochemistry studies using anti-VDIPEN, anti-NITEGE, and Col2-3/4Cshort neoepitope antibodies. Proteoglycan depletion was assessed by Alcian blue staining and chondrocyte cell death, with the TUNEL technique. Results All knockout mice showed accelerated development of OA lesions in the medial tibial cartilage after surgery, compared with wild-type mice. ICE-, iNOS-, and particularly IL-1,,knockout mice developed OA lesions in the lateral cartilage of unoperated limbs. Development of focal histopathologic lesions was accompanied by increased levels of MMP-, aggrecanase-, and collagenase-generated cleavage neoepitopes in areas around lesions, while nonlesional areas showed no change in immunostaining. Extensive cell death was also detected by TUNEL staining in focal areas around lesions. Conclusion We postulate that deletion of each of these genes, which encode molecules capable of producing degenerative changes in cartilage, leads to changes in the homeostatic controls regulating the balance between anabolism and catabolism, favoring accelerated cartilage degeneration. These observations suggest that these genes may play important regulatory roles in maintaining normal homeostasis in articular cartilage matrix turnover. [source]


Distribution pattern of versican, link protein and hyaluronic acid in the rat jreiodontal ligament during exjreimental tooth movement

JOURNAL OF PERIODONTAL RESEARCH, Issue 1 2002
R. Sato
The ability of the jreiodontal ligament (PDL) to rapidly remodel is the basis of orthodontic tooth movement. During the tooth movement, matrix proteoglycans (PGs) may play important roles in spatial, mechanical and biological aspects for the maintenance and repair of the PDL. The aim of this study was to characterize the distribution of a large hyaluronic acid (HA)-binding proteoglycan, versican, link protein (LP) and HA in the rat molar PDL during exjreimental tooth movement by histochemical and immunohistochemical methods. Exjreimental tooth movement was jreformed according to Waldo's method. Histologically, regressive changes, such as decrease of fibroblasts and collagen fibers and exudative change of edema were observed in the compressive side and progressive changes, such as proliferation of fibroblasts and collagen fibers, in the strain side one day after treatment. By 3 days after tooth movement, regressive or progressive changes were not observed in either side. Using monoclonal antibodies specific to versican core protein or LP, the positive immunoreactivity for both molecules was constantly observed throughout the PDL. After the exjreimental force was applied to the tooth, however, the immunostainings of versican and LP became significantly intense only in the compressive side but decreased in the strain side. The intensity in the compressive side was strongest one day after the force was applied and gradually diminished thereafter. HA of both sides did not change during exjreimental tooth movement. Since HA is present in the PDL, large amounts of versican and LP expressed in the compressive side may create large hydrated aggregates via their association with HA that dissipates the compressive force applied to this tissue. [source]


Brevican in the developing hippocampal fimbria: Differential expression in myelinating oligodendrocytes and adult astrocytes suggests a dual role for brevican in central nervous system fiber tract development

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2001
Tokiko Ogawa
Abstract Brevican is one of the most abundant extracellular matrix proteoglycans in the mammalian brain. We have previously shown that brevican produced by gray matter astrocytes constitutes a major component of perineuronal extracellular matrix in the adult brain. In this paper, we investigate the expression of brevican in the postnatal hippocampal fimbria to explore the role of the proteoglycan in central nervous system fiber tract development. We demonstrate that brevican is expressed by both oligodendrocytes and white matter astrocytes in the fimbria, but the expression of brevican in these two glial cell types is differently regulated during development. At P14, brevican immunoreactivity was observed throughout the fimbria, with particularly strong immunoreactivity in the developing interfascicular glial rows. In situ hybridization showed that oligodendrocytes in the glial rows strongly express brevican during the second and third postnatal weeks. Expression in oligodendrocytes was then down-regulated after P21. In the adult fimbria, no brevican expression was observed in oligodendrocytes. The time window of brevican expression coincides with the phase in which immature oligodendrocytes actively extend membrane processes and enwrap axon fibers. In contrast, the expression in astrocytes started around P21 as oligodendrocytes began to down-regulate the expression. In the adult fimbria, brevican expression was restricted to astrocytes. In situ hybridization with isoform-specific probes and RNase protection assays showed that the authentic, secreted form of brevican, not the glycosylphosphatidylinositol-anchored variant, is the predominant species expressed in the developing fimbria. Our results suggest that brevican plays a dual role in developing and adult fiber tracts. J. Comp. Neurol. 432:285,295, 2001. © 2001 Wiley-Liss, Inc. [source]


Neutrophil gelatinase,associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9

ARTHRITIS & RHEUMATISM, Issue 10 2007
Kalpana Gupta
Objective Expression of matrix metalloproteinase 9 (MMP-9) is up-regulated in osteoarthritis (OA) and usually presents as multiple bands when synovial fluid (SF) from OA patients is analyzed by zymography. Among these bands is an ,125,130,kd band for high molecular weight (HMW) gelatinase, which has not been characterized. This study was undertaken to characterize the HMW MMP activity in OA SF. Methods MMP activity in OA SF was determined by gelatin zymography. Recombinant MMPs were used to identify MMP activity on the zymogram. Western immunoblotting, immunoprecipitation, and immunodepletion analyses were performed using antibodies specific for human MMP-9 and human neutrophil gelatinase,associated lipocalin (NGAL). Human cartilage matrix degradation was determined by dimethylmethylene blue assay. Results Zymographic analysis showed that the HMW gelatinase in OA SF comigrated with a purified NGAL,MMP-9 complex. Results of Western immunoblotting showed that the HMW gelatinase was also recognized by antibodies specific for human NGAL or human MMP-9. These same antibodies also immunoprecipitated the HMW gelatinase activity from OA SF. The NGAL,MMP-9 complex was reconstituted in vitro in gelatinase buffer. In the presence of NGAL, MMP-9 activity was stabilized; in the absence of NGAL, rapid loss of MMP-9 activity occurred. MMP-9,mediated release of cartilage matrix proteoglycans was significantly higher in the presence of NGAL (P < 0.05). Conclusion Our findings demonstrate that the HMW gelatinase activity in OA SF represents a complex of NGAL and MMP-9. The ability of NGAL to protect MMP-9 activity is relevant to cartilage matrix degradation in OA and may represent an important mechanism by which NGAL may contribute to the loss of cartilage matrix proteins in OA. [source]


Kinetics of bone protection by recombinant osteoprotegerin therapy in Lewis rats with adjuvant arthritis

ARTHRITIS & RHEUMATISM, Issue 7 2002
Giuseppe Campagnuolo
Objective To assess the effect of different dosages and treatment schedules of osteoprotegerin (OPG) on joint preservation in an experimental model of adjuvant-induced arthritis (AIA). Methods Male Lewis rats with AIA (6,8 per group) were treated with a subcutaneous bolus of recombinant human OPG according to one of the following schedules: daily OPG (an efficacious regimen) starting at disease onset (days 9,15), early intervention (days 9,11), delayed intervention (days 13,15), and extended therapy (days 9,22). Inflammation (hind paw swelling) was quantified throughout the clinical course; osteoporosis (bone mineral density [BMD], by quantitative dual x-ray absorptiometry) and morphologic appraisals of inflammation, bone damage, intralesional osteoclasts (by semiquantitative histopathologic scoring), and integrity of the articular cartilage matrix (by retention of toluidine blue stain) were determined in histology sections of arthritic hind paws. Results OPG provided dose- and schedule-dependent preservation of BMD and periarticular bone while essentially eliminating intralesional osteoclasts. Dosages ,2.5 mg/kg/day preserved or enhanced BMD and prevented essentially all erosions. A dosage of 4 mg/kg/day protected joint integrity to a comparable degree when given for 7 (days 9,15) or 14 (days 9,22) consecutive days. At this dosage, early intervention (days 9,11) was twice as effective as delayed intervention (days 13,15) at preventing joint dissolution. Erosions and osteoclast scores were greatly decreased for 26 days (measured from the first treatment) after 7 or 14 daily doses of OPG (4 mg/kg/day). OPG treatment also prevented loss of cartilage matrix proteoglycans, an indirect consequence of protecting the subchondral bone. No OPG dosage or regimen alleviated weight loss, inflammation, or periosteal osteophyte production. Conclusion These data indicate that OPG preserves articular bone and (indirectly) articular cartilage in arthritic joints in a dose- and schedule-dependent manner, halts bone erosion when given at any point during the course of arthritis, produces sustained antierosive activity after a short course, and is most effective when initiated early in the disease. [source]