Material Surfaces (material + surface)

Distribution by Scientific Domains


Selected Abstracts


Space-Charge Limited Current from Plasma-Facing Material Surface

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 1-3 2004
S. Takamura
Abstract We have derived an exact theoretical expression for the space-charge limited current from the solid surfaces adjacent to plasmas that is applicable for an arbitrary sheath voltage. Our expression shows that the spacecharge limited current tends to saturate with the sheath voltage. This new formula is evaluated by 1-D Particle in Cell (PIC) simulation and experiment, and is in a good agreement with the simulation and experimental results. We have also obtained an analytical equation fitted to the new formula based on conventional Child-Langmuir formula by taking into account a more sophisticated dependence of the electrode potential and the plasma density through the effect of Debye shielding and a sheath expansion due to increased voltage across the sheath. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Positively Charged Material Surfaces Generated by Plasma Polymerized Allylamine Enhance Vinculin Mobility in Vital Human Osteoblastss,

ADVANCED ENGINEERING MATERIALS, Issue 8 2010
Henrike Rebl
Abstract Several studies suggest that the modification of an implant surface by chemical means plays an important role in bone tissue engineering. Previously we have shown that osteoblast cell adhesion and spreading can strongly be increased by a positively charged surface. Cell adhesion and migration are two vital processes that are completely dependent on coordinated formation of focal adhesions. Changes in the organization of the actin cytoskeleton and the focal adhesions are essential for numerous cellular processes including cell motility and tissue morphogenesis. We examined the mobility of the cytoskeletally associated protein vinculin on functionalized surfaces using plasma polymerized allylamine (PPAAm), a homogenous plasma polymer layer with randomly distributed amino groups. In living, GFP,vinculin transfected osteoblastic cells we determined a significant increase in vinculin mobility and vinculin contact length on PPAAm compared to collagen I coated surfaces during the initial adhesion phase. We suggest that positive charges control the cell physiology which seems to be dominant over the integrin receptor binding to collagen I. The results emphasize the role of the surface charge for the design of artificial scaffolds in bone repair. [source]


Fixation of heavy contaminants of a dirty bomb attack: Studies with uranium and metal simulants

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2007
Thomas L. McGehee
Abstract Asphalt emulsions were evaluated as a means to immobilize radiological contaminants deposited on urban surfaces after a dirty bomb attack. Contaminated surfaces would be sprayed with thin coatings of asphalt emulsion to encapsulate the radioactive particles until the site can be safely remediated. This research investigated applications of an asphalt emulsion (Topein C, Encapco Technologies, LLC, Napa, CA) to treat (zero-valent) iron, lead, and uranium powders on various building material surfaces. Initial studies found that some of the building materials (limestone, concrete, and metal) reacted with the emulsion producing gas bubbles, which formed 0.001 to 1 cm vesicles in the cured asphalt emulsion. These vesicles, however, did not expose the building material surface, and the reaction appeared to aid in the setting of the emulsion. Powdered lead did not react with the asphalt emulsion, but iron powder and uranium did. Iron powder and the emulsion formed vesicles up to 0.5 mm (but not exposing the building material surface), while the uranium (U3O8) had a moderate reaction when compared with to the lead and iron powders. Scanning electron micrographs showed that the lead powder formed nonreactive layers adjacent to the concrete surface while iron particles were evenly distributed in the asphalt matrix due to the reaction with the asphalt, indicating that the physical and chemical reactions between the iron metal particles, asphalt, and concrete affected particle distribution in the asphalt matrix. A vertical operation sediment tube was used to determine the flowing shear stress durability of the asphalt/metal/substrate complex. The asphalt treatment with iron had no loss at the shear range tested (0.1,2.5 Pa), while the asphalt stabilized powdered lead lost 8% asphalt and lead at 2.5 Pa mean shear stress applied for 5 h. The chemical reaction between asphalt emulsion and iron increased the resistance of the asphalt/metal/substrate complex to shear when compared with lead. Some hydrogen was formed in reactions with iron, but the amount formed was well below the lower flammability limit. Treatment of uranium indicated that the emulsion was effective at reducing leaching of the uranium 10 fold. These experiments indicate that asphalt emulsions may be a viable means for containing metallic or dense radiological contaminants on common building materials. © 2007 American Institute of Chemical Engineers Environ Prog 26:94,103, 2007 [source]


Surface Activation of a Ferrimagnetic Glass,Ceramic for Antineoplastic Drugs Grafting

ADVANCED ENGINEERING MATERIALS, Issue 7 2010
Enrica Vernč
A ferrimagnetic glass,ceramic, belonging to the system SiO2,Na2O,CaO,P2O5,FeO,Fe2O3, has been studied as potential carrier for antineoplastic agents, in order to exploit the combination of hyperthermia and chemotherapy. Different material pre-treatments, such as ultrasonic washing, water, or simulated body fluid dipping, were evaluated to promote the surface activation of the glass,ceramic, i.e., the hydroxyl groups formation on it. X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersion spectrometry, and wettability measurements were performed to observe the samples surface modification. The best results in terms of free hydroxyl groups exposition were obtained by dipping the samples in distilled water for 7 days at 37,°C. Two different anticancer drugs were selected in order to test the reactivity of the activated surface: cisplatinum and doxorubicin. The uptake and release of doxorubicin and cisplatinum were evaluated on glass,ceramic powders, by using UV,Visible spectrometry and graphite furnace atomic absorption spectroscopy, respectively. After 1 day of uptake at 37,°C, the quantity of doxorubicin incorporated into the glass,ceramic is 77,±,7 wt%, while only 42,±,9.6 wt% of cisplatinum is grafted onto the material surface. For both antitumoral agents, the maximum drug release after soaking in aqueous solutions at 37,°C was obtained in few hours, with a randomly distributed kinetics trend. [source]


Functionalized Poly(D,L -lactide) for Pulmonary Epithelial Cell Culture

ADVANCED ENGINEERING MATERIALS, Issue 4 2010
Yuan-Min Lin
Functional groups on a material surface affect the response of many cell types. As part of our strategy aimed at engineering lung tissue, we introduced functional groups into the surface of Poly(D,L -lactide) (PDLLA) films to improve its suitability for the culture of mature pulmonary epithelial cells (A549 line) using two different methods. The first method, aminolysis, can introduce primary amines into PDLLA films by transesterification using 1,15% of ethylenediamine in isopropanol. The second method, a branching modification, can generate amine-terminated or carboxylic acid-terminated tree-like branched architectures. All modified PDLLA surfaces exhibited lower water contact angles, i.e. are more hydrophilic than unmodified PDLLA. PDLLA treated with 15% ethylenediamine exhibited a rougher surface than the control, and PDLLA with branching modification had a droplet-like surface topography as visualized by atomic force microscopy (AFM). PDLLA treated with 15% ethylenediamine and branching modification with two and three generations enhanced the attachment of pulmonary epithelial cells measured using Hoechst dye. Immunostaining demonsatrated that amine-terminated branched architectures allowed for better focal adhesion point formation than the control 24,h after cell seeding. Furthermore, they also induced higher A549 cell populations and levels of activity after 4 days in culture measured using Hoechst dye and WST1 cell proliferation reagents, respectively. In contrast, carboxylic acid-terminated branching architectures were found to reduce the cell population size after 4 days. It was concluded that the concentration, type and distribution of surface functional groups can affect significantly the behavior of pulmonary epithelial cells growing on a PDLLA surface, and PDLLA film modified with two or three generations of amine-terminated branched architectures is a suitable 2D scaffold for the culture of of pulmonary epithelial cells. [source]


Dangers relating to fires in carbon-fibre based composite material

FIRE AND MATERIALS, Issue 4 2005
Tommy Hertzberg
Abstract Inhalable carbon fibres have been suspected to pose similar threats to human health as asbestos fibres. It is well-known that fibres having a diameter of less than 3 µm might be inhaled and transported deep into the human respiratory system. Some composite materials use carbon fibres as structural reinforcement. These fibres do not pose any risks as such as they are firmly connected to the laminate and surrounded by a polymer matrix. Also, these fibres typically have diameters >6 µm and thus, are not inhalable. However, if the material is exposed to a fire, the carbon material might be oxidized and fractionated and thereby, inhalable fibres might be generated into the fire smoke. The capability of carbon fibre-based composite material to produce dangerous inhalable fibres from different combustion scenarios has been investigated. It was found that the risk of fires generating inhalable carbon fibres is related to the surface temperature, the oxygen level and the airflow field close to the material surface. The temperatures necessary for oxidation of the carbon fibre is so high that it is possible that only a flashover situation will pose any real danger. Other possible danger scenarios are highly intense fires (e.g. a liquid fuel fire), or situations where structural damage is part of the fire scenario. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Geometrically non-linear damage interface based on regularized strong discontinuity

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2002
Ragnar Larsson
Abstract The contribution of this paper concerns the fracture modelling of an interface with a fixed internal material surface in the context of geometrically non-linear kinematics. Typical applications are composite laminates and adhesive/frictional joints in general. In the model development, a key feature is the concept of regularized strong discontinuity, which provides a regular deformation gradient within the interface. The deformation gradient within the interface is formulated in a multiplicative structure with a continuous part and a discontinuous part, whereby the interface deformation is interpreted as a transformation between the material damaged configuration and the actual spatial configuration. In analogy with the continuum formulation of hyper-inelasticity, a constitutive framework is defined for the relation between the induced material traction and the displacement jump vector, which are defined on the material damaged interface configuration. Within this framework, a simple, but yet still representative, model for the delamination problem is proposed on the basis of a damage,plasticity coupling for the interface. The model is calibrated analytically in the large deformation context with respect to energy dissipation in mode I so that a predefined amount of fracture energy is dissipated. The paper is concluded with a couple of numerical examples that display the properties of the interface. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Nanoscale Engineering of Biomaterial Surfaces,

ADVANCED MATERIALS, Issue 4 2007
M. Lipski
Single-step independent modification of the texture and chemistry of a material surface through the assembly of functionalized silica nanoparticles (NPs) is described. Such NP surface modifications enhance the differentiation of human-marrow-derived mesenchymal cells into an osteogenic lineage and present a new paradigm for nanoscale biomimetic engineering of a biomaterial surface. [source]


An investigation into the surface fatigue of materials and thin layers using a sliding diamond spherical segment

LUBRICATION SCIENCE, Issue 2 2000
Ivan Iliuc
Abstract Methods for testing the surface fatigue of materials or thin layers normally involve configurations with two or more rolling balls or discs. Such equipment and test specimens are quite complicated, and for a large number of experiments, costly. Testing could be considerably simplified if the stressing of the material surface were performed with a sliding natural diamond spherical segment. A diamond on steel (or any different material) friction pair has the particular attribute that sliding wear is absent. Under these circumstances, after a certain number of strain cycles, fatigue failure of the investigated surface or layers appears. A particularly relevant application is investigation of the adhesion of a DLC layer. [source]


Chemical and morphological features of dental composite resin: Influence of light curing units and immersion media

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2010
Patrícia Aleixo Dos Santos
Abstract Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm2), Jet Lite 4000 Plus (1230mW/cm2), and Ultralume Led 5 (790 mW/cm2) and immersion media were artificial saliva, Coke®, tea and coffee, totaling 12 experimental groups. Specimens (10 mm × 2 mm) were immersed in each respective solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37°C ± 1°C between immersion periods. Topography and chemical analysis was qualitative. Findings: Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon, potassium and phosphorus. For Coke®, excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion: Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke® affected material's surface more than did the other tested drinks. Microsc. Res. Tech., 2010. © 2009 Wiley-Liss, Inc. [source]


Micro-fabrication and monitoring of three-dimensional microstructures based on laser-induced thermoplastic formation

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 10 2009
Leyan Wang
Abstract This article reports a novel laser-induced micro-fabrication method and its monitoring system for three-dimensional (3D) microstructures. The mechanism of the method is that a small zone of thermoplastic material melted by laser heating grows in liquid surrounding environment, solidifying into a convex microstructure, such as micro-dot or micro-pillar. A laser diode (808 nm) with maximum power output of 130 mW is used as power source, and a kind of paraffin mixed with stearic acid and paint serves as the thermoplastic material for 3D microstructure formation experiments. A light microscope system consisting of a charge-coupled device (CCD) and a computer is utilized to realize real-time observation of the micro-fabricating process. The distribution of local temperature rise on material surface created by laser irradiation is simulated. The effects of liquid environment on microstructure formation have been theoretically analyzed and experimentally studied. Experiments are further carried out to investigate the relationship between laser spot and fabricated microstructures. The results indicate that the widths of micro-dots or micro-pillars are mostly determined by the size of focal spot, and their heights increase with the enlargement of laser power density. With this method, a micro-dot array of Chinese characters meaning "China" has been successfully fabricated through computer programming. This method has the advantages of implementing direct, mask-less, real-time and inexpensive 3D microstructure fabrication. Therefore, it would be widely applied in the fields of micro/nano-technology for practical fabrication of different kinds of 3D microstructures. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc. [source]


Viability study of HL60 cells in contact with commonly used microchip materials

ELECTROPHORESIS, Issue 24 2006
Floor Wolbers
Abstract This paper presents a study in which different commonly used microchip materials (silicon oxide, borosilicate glass, and PDMS) were analyzed for their effect on human promyelocytic leukemic (HL60) cells. Copper-coated silicon was analyzed for its toxicity and therefore served as a positive control. With quantitative PCR, the expression of the proliferation marker Cyclin D1 and the apoptosis marker tissue transglutaminase were measured. Flow cytometry was used to analyze the distribution through the different phases of the cell cycle (propidium iodide, PI) and the apoptotic cascade (Annexin V in combination with PI). All microchip materials, with the exception of Cu, appeared to be suitable for HL60 cells, showing a ratio apoptosis/proliferation (Rap) comparable to materials used in conventional cell culture (polystyrene). These results were confirmed with cell cycle analysis and apoptosis studies. Precoating the microchip material surfaces with serum favor the proliferation, as demonstrated by a lower Rap as compared to uncoated surfaces. The Cu-coated surface appeared to be toxic for HL60 cells, showing over 90% decreased viability within 24,h. From these results, it can be concluded that the chosen protocol is suitable for selection of the cell culture material, and that the most commonly used microchip materials are compatible with HL60 culturing. [source]


Fixation of heavy contaminants of a dirty bomb attack: Studies with uranium and metal simulants

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2007
Thomas L. McGehee
Abstract Asphalt emulsions were evaluated as a means to immobilize radiological contaminants deposited on urban surfaces after a dirty bomb attack. Contaminated surfaces would be sprayed with thin coatings of asphalt emulsion to encapsulate the radioactive particles until the site can be safely remediated. This research investigated applications of an asphalt emulsion (Topein C, Encapco Technologies, LLC, Napa, CA) to treat (zero-valent) iron, lead, and uranium powders on various building material surfaces. Initial studies found that some of the building materials (limestone, concrete, and metal) reacted with the emulsion producing gas bubbles, which formed 0.001 to 1 cm vesicles in the cured asphalt emulsion. These vesicles, however, did not expose the building material surface, and the reaction appeared to aid in the setting of the emulsion. Powdered lead did not react with the asphalt emulsion, but iron powder and uranium did. Iron powder and the emulsion formed vesicles up to 0.5 mm (but not exposing the building material surface), while the uranium (U3O8) had a moderate reaction when compared with to the lead and iron powders. Scanning electron micrographs showed that the lead powder formed nonreactive layers adjacent to the concrete surface while iron particles were evenly distributed in the asphalt matrix due to the reaction with the asphalt, indicating that the physical and chemical reactions between the iron metal particles, asphalt, and concrete affected particle distribution in the asphalt matrix. A vertical operation sediment tube was used to determine the flowing shear stress durability of the asphalt/metal/substrate complex. The asphalt treatment with iron had no loss at the shear range tested (0.1,2.5 Pa), while the asphalt stabilized powdered lead lost 8% asphalt and lead at 2.5 Pa mean shear stress applied for 5 h. The chemical reaction between asphalt emulsion and iron increased the resistance of the asphalt/metal/substrate complex to shear when compared with lead. Some hydrogen was formed in reactions with iron, but the amount formed was well below the lower flammability limit. Treatment of uranium indicated that the emulsion was effective at reducing leaching of the uranium 10 fold. These experiments indicate that asphalt emulsions may be a viable means for containing metallic or dense radiological contaminants on common building materials. © 2007 American Institute of Chemical Engineers Environ Prog 26:94,103, 2007 [source]


Hydrogels in Regenerative Medicine,

ADVANCED MATERIALS, Issue 32-33 2009
Brandon V. Slaughter
Abstract Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field. [source]


Generation of Bioactive Materials with Rapid Self-Assembling Resorcinarene-Peptides

ADVANCED MATERIALS, Issue 28 2009
Mirren Charnley
Adhesive resorcinarene molecules rapidly self-assemble on a wide range of material surfaces. We have created resorcinarenes that contain a biologically active terminal GKP- D -V anti-inflammatory peptide by a rapid "dip-and-dry" forming method. The growth of neural Schwann and fibroblast cells on a layer of resorcinarene-GKP- D -V demonstrate inhibition of inflammatory signaling. [source]


Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings

ADVANCED MATERIALS, Issue 4 2009
Haeshin Lee
A new surface bioconjugation strategy is presented. A polydopamine surface coating provides chemical activation on material surfaces, is resistant to hydrolysis, and offers selectivity in coupling of biomolecules via nucleophilic groups through simple pH control. Control of orientation of immobilized biomolecules may be possible using terminally modified DNA or His-containing proteins. [source]


Comparison of cobalt chromium, ceramic and pyrocarbon hemiprostheses in a rabbit model: Ceramic leads to more cartilage damage than cobalt chromium

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2008
Martin Jung
Abstract Cartilage wear after hemiarthroplasty remains a problem in orthopedic surgery. The main cause of cartilage wear, apart from incongruency of the joint partners, is generally considered to be the tribology of the material surfaces. This study evaluates in 27 rabbits the degree of cartilage wear of the tibia plateau after hemiarthroplasty with proximal interphalangeal prostheses made of three different materials [cobalt chromium (CoCr), pyrocarbon (PyCa), and ceramic (Cer)]. Three months after hemiarthroplasty, the articulating tibial cartilage was histomorphologically examined and degenerative damage was graded using the modified Mankin score. The mechanical capacity of the cartilage was assessed by stress relaxation testing. The biomechanical properties of the cartilage were significantly superior in the CoCr group as compared with the Cer group (p < 0.03), indicating less damage to the articulating cartilage surface. The Mankin score showed significantly lower values in the CoCr compared with Cer group (p = 0.011), whereas no differences were found between PyCa and CoCr or PyCa and Cer. In contrast to earlier reports, in this hemiarthroplasty model, the CoCr alloy showed less cartilage damage than a ceramic surface. Further, in vivo experiments are necessary to elucidate the controversial issue of the most suitable material for hemiarthroplasty. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source]


Comparison of implicit solvent models for the simulation of protein,surface interactions

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 16 2006
Yu Sun
Abstract Empirical force field-based molecular simulations can provide valuable atomistic-level insights into protein,surface interactions in aqueous solution. While the implicit treatment of solvation effects is desired as a means of improving simulation efficiency, existing implicit solvent models were primarily developed for the simulation of peptide or protein behavior in solution alone, and thus may not be appropriate for protein interactions with synthetic material surfaces. The objective of this research was to calculate the change in free energy as a function of surface,separation distance for peptide,surface interactions using different empirical force field-based implicit solvation models (ACE, ASP, EEF1, and RDIE with the CHARMM 19 force field), and to compare these results with the same calculations conducted using density functional theory (DFT) combined with the self-consistent reaction field (SCRF) implicit solvation model. These comparisons show that distinctly different types of behavior are predicted with each implicit solvation method, with ACE providing the best overall agreement with DFT/SCRF calculations. These results also identify areas where ACE is in need of improvement for this application and provide a basis for subsequent parameter refinement. © 2006 Wiley Periodicals, Inc. J Comput Chem, 2006 [source]


Effect of etching and sandblasting on bond strength to sintered porcelain of unfilled resin

JOURNAL OF ORAL REHABILITATION, Issue 2 2000
H. Kato
This study determined the bond strength of an unfilled resin joined to a feldspathic porcelain for the purpose of evaluating the retentive performance of the prepared material surfaces. Porcelain disks (VMK 68 dentin) were either air abraded with alumina (AAA) or etched with one of the following five etchants: (1) ammonium hydrogen bifluoride (AHB); (2) acidulated phosphate fluoride (APF); (3) hydrofluoric acid (HFA); (4) phosphoric acid (PHA); and (5) sulfuric acid-hydrofluoric acid (SHF). Specimens ground with abrasive paper were also used as controls. After surface preparation, the two different sized porcelain disks were bonded together with a methyl methacrylate-based resin initiated with tri- n -butylborane (MMA-TBB resin). Shear bond strengths were determined both before and after thermocycling. Before the thermocycling, the greatest bond strengths (21·3 and 23·7 MPa) were generated with the use of the SHF and HFA agents, followed by the AHB agent (18·4 MPa). Reduction in bond strength after thermocycling was significant for all groups, although the SHF- and HFA-treated groups exhibited bond strengths greater than 15 MPa even after the thermocycling. The results indicated the effectiveness of the SHF- or HFA-etching for retaining the acrylic resin to the porcelain. However, ageing testing also revealed insufficient retentive characteristics of the acrylic resin by etching alone. [source]


Temporal effects of cell adhesion on mechanical characteristics of the single chondrocyte

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2003
Wei Huang
Abstract Cell adhesion to material surfaces is a fundamental phenomenon in tissue response to implanted devices, and an important consideration in tissue engineering. For example, elucidation of phenomena associated with adhesion of chondrocytes to biomaterials is critical in addressing the difficult problem of articular cartilage regeneration. The first objective of this study was to measure the mechanical adhesiveness characteristics of individual rabbit articular chondrocytes as a function of seeding time to provide further understanding of the cell adhesion process. The second objective was to quantify the force required to separate the plasma membrane from the underlying cytoskeleton as a function of seeding time. After culturing chondrocytes on glass coverslips for 1, 2, 4, 6 h, two biomechanical tests were performed on single chondrocytes: (i) mechanical adhesiveness measurement by the cytodetacher; and (ii) plasma membrane tether formation force measurement by optical tweezers. Cell mechanical adhesiveness increased from 231 ± 149 Pa at 1 h to 1085 ± 211 Pa at 6 h. The cell contact area with the substrata increased from 161 ± 52 ,m2 at 1 h to 369 ± 105 ,m2 at 6 h. The tether formation force increased from 232 ± 23 pN at 1 h to 591 ± 17 pN at 6 h. Moreover, fluorescence staining by rhodamine-phalloidin demonstrated the process of actin spreading within the cytoskeleton from 0.5 to 6 h and allowed for measurement of cell height which was found to decrease from 12.3 ± 2.9 ,m at 0.5 h to 6.2 ± 0.9 ,m at 6 h. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


Quantitative Analysis of Human Platelet Adhesions Under a Small-Scale Flow Device

ARTIFICIAL ORGANS, Issue 4 2010
Katsuko S. Furukawa
Abstract To realize real-time evaluation of human platelet adhesions onto material surfaces with small volumes of human platelet suspensions, we developed an apparatus consisting of a modified cone and plate-type viscometer, combined with an upright epi-fluorescence microscope. The apparatus allowed real-time evaluation of platelet,material interactions and the initial event of thrombus formation, using small platelet suspension volumes (7.5 µL) under shear flow conditions. To study the dynamic behavior of platelet,material interaction, we chose five representative opaque and transparent materials: acrylate resin (AC), polytetrafluoroethylene (PTFE), polyvynylchrolide (PVC), glass, and a monolayer of human normal umbilical cord vein endothelial cells (EC) on glass under shear flow conditions. The values of adhesiveness of human platelets to the test materials in descending order were as follows: AC > PTFE > PVC > glass > human EC. Under this new small-scale flow system, we could obtain highly reproducible data, which were comparable with results from a previously developed large-scale flow system. Therefore, the newly developed cone and plate-type rheometer is a useful instrument for testing and screening materials, and allows precise quantitative evaluation of human platelet adhesion. [source]