Material Release (material + release)

Distribution by Scientific Domains


Selected Abstracts


Hierarchic Nanostructure for Auto-Modulation of Material Release: Mesoporous Nanocompartment Films

ADVANCED FUNCTIONAL MATERIALS, Issue 11 2009
Qingmin Ji
The preparation of mesoporous nanocompartment films composed of both hollow silica capsules and silica particles by using layer-by-layer (LbL) adsorption is described. The resultant nanocompartment films exhibit stepwise release of encapsulated water molecules without application of external stimuli. The hollow hierarchic pore structure of the silica capsules, including their internal void and mesoporous walls, is a key factor for the regulation and stepwise release of water, and is probably caused by the non-equilibrated concurrent evaporation of material from the mesopore and capillary penetration into the mesopores. The number of release steps and rate of release can be tuned by variation of several parameters including water content, ambient temperature, layer multiplicity, and co-adduct particle size. Application of the mesoporous nanocompartment films for the release of substances, including therapeutic agents and fragrances, indicates that the stepwise material release can be applied for a wide range of liquid substances. The films should lead to a novel material release system useful even for biomedical applications capable of controlled and sustained delivery of drug molecules. [source]


The effect of surface treatments on the fretting behavior of Ti-6Al-4V alloy

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2008
Matteo Dalmiglio
Abstract Stem modularity in total hip replacement introduces an additional taper joint between Ti-6Al-4V stem components with the potential for fretting corrosion processes. One possible way to reduce the susceptibility of the Ti-6Al-4V/Ti-6Al-4V interface to fretting is the surface modification of the Ti-6Al-4V alloy. Among the tested, industrially available surface treatments, a combination of two deep anodic spark deposition treatments followed by barrel polishing resulted in a four times lower material release with respect to untreated, machined fretting pad surfaces. The fretting release has been quantified by means of radiotracers introduced in the alloy surface by proton irradiation. In a simple sphere on flat geometry, the semispherical fretting pads were pressed against flat, dog-bone shaped Ti-6Al-4V fatigue samples cyclically loaded at 4 Hz. In this way a cyclic displacement amplitude along the surfaces of 20 ,m has been achieved. A further simplification consisted in the use of deionized water as lubricant. A comparison of the radiotracer results with an electrochemical material characterization after selected treatments by potentiostatic tests of modular stems in 0.9% NaCl at 40°C for 10 days confirmed the benefit of deep anodic spark deposition and subsequent barrel polishing for improving the fretting behavior of Ti-6Al-4V. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source]


Comparison of atmospheric transport calculations over complex terrain using a mobile profiling system and rawinsondes

METEOROLOGICAL APPLICATIONS, Issue 4 2000
Robert M Cox
A comparison of atmospheric transport and dispersion calculations over complex terrain was investigated using a mobile profiling system (MPS) versus standard meteorological balloons. Meteorological and sulfur hexafluoride (SF6) concentration data were collected and used to evaluate the performance of a transport and diffusion model coupled with a mass consistency wind field model. Meteorological data were collected throughout April 1995, and parts of August 1995. Both meteorological and concentration data were measured in December 1995. Once the models were validated, the comparison of performance with different upper-air data were accomplished. The models used included the SCIPUFF (Second-order Closure Integrated Puff) transport and diffusion model and the MINERVE mass consistency wind model. Evaluation of the models was focused primarily on their effectiveness as a short-term (one to four hours) predictive tool. These studies showed how the combination of weather and transport models could be used to help direct emergency response following a hazardous material release. The models were used in tandem to direct the deployment of mobile sensors intended to intercept and measure tracer clouds. The MINERVE model was validated for the specific terrain of interest using April 1995 data. The capability of SCIPUFF driven by realistic three-dimensional wind fields generated by MINERVE is demonstrated using data collected in December 1995. Copyright © 2000 Royal Meteorological Society [source]