Massive Apoptosis (massive + apoptosi)

Distribution by Scientific Domains


Selected Abstracts


Increased hepatotoxicity of tumor necrosis factor,related apoptosis-inducing ligand in diseased human liver,

HEPATOLOGY, Issue 5 2007
Xandra Volkmann
Tumor necrosis factor,related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumor cells but not in most normal cells and has therefore been proposed as a promising antitumor agent. Recent experiments suggested that isolated primary human hepatocytes but not monkey liver cells are susceptible to certain TRAIL agonists, raising concerns about the use of TRAIL in cancer treatment. Whether TRAIL indeed exerts hepatotoxicity in vivo and how this is influenced by chemotherapeutic drugs or liver disease are completely unknown. Employing different forms of recombinant TRAIL, we found that the cytokine can induce proapoptotic caspase activity in isolated human hepatocytes. However in marked contrast, these different TRAIL preparations induced little or no cytotoxicity when incubated with tissue explants of fresh healthy liver, an experimental model that may more faithfully mimic the in vivo situation. In healthy liver, TRAIL induced apoptosis only when combined with histone deacetylase inhibitors. Strikingly, however, TRAIL alone triggered massive apoptosis accompanied by caspase activation in tissue explants from patients with liver steatosis or hepatitis C viral infection. This enhanced sensitivity of diseased liver was associated with an increased expression of TRAIL receptors and up-regulation of proapoptotic Bcl-2 proteins. Conclusion: These results suggest that clinical trials should be performed with great caution when TRAIL is combined with chemotherapy or administered to patients with inflammatory liver diseases. (HEPATOLOGY 2007.) [source]


MicroRNA-34a is an important component of PRIMA-1-induced apoptotic network in human lung cancer cells

INTERNATIONAL JOURNAL OF CANCER, Issue 2 2010
Wenrui Duan
Abstract Restoration of p53 function in tumor cells would be an attractive strategy for lung cancer therapy because p53 mutations are found in more than 50% of lung cancers. The small molecule PRIMA-1 has been shown to restore the tumor suppression function of p53 and to induce apoptosis in human tumor cells. The mechanism of apoptosis induced by PRIMA-1 remains unclear. We investigated the effects of PRIMA-1 in apoptosis with Western immunoblot analysis, TaqMan microRNA real-time PCR, cell viability analysis and flow cytometry using human lung cancer cell lines containing mutant (H211 and H1155), wild-type (A549) or null (H1299) p53. PRIMA-1 induced massive apoptosis in the H211 and H1155 cells, but was less toxic to the A549 and H1299 cells. Western immunoblot analysis showed cleavage of PARP in H211 and H1155 cells but not in A549 and H1299 cells following treatment with PRIMA-1. In addition, p53 protein was also phosphorylated in H211 and H1155 cells. TaqMan microRNA assay showed that the expression of microRNA-34a was increased in the H211 and H1155 cells posttreatment. Knockdown microRNA-34a decreased the rate of apoptosis caused by PRIMA-1. The above results suggest that microRNA-34a is one of the important components of PRIMA-1-induced apoptotic network in the cancer cells harboring mutant p53. [source]


Bcl- XL and MCL-1 constitute pertinent targets in ovarian carcinoma and their concomitant inhibition is sufficient to induce apoptosis

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2010
Emilie Brotin
Abstract In ovarian carcinomas, recurrence and acquired chemoresistance are the first leading causes of therapeutic failure and are responsible for the poor overall survival rate. Cisplatin exposure of sensitive cells has been previously associated with a down-regulation of Bcl- XL expression and apoptosis, whereas recurrence was systematically observed when Bcl- XL expression was maintained. Bcl- XL down-regulation could thus constitute an interesting chemosensitizing strategy. We showed that a Bcl- XLtargeted RNA interference strategy efficiently sensitized chemoresistant ovarian carcinoma cells to cisplatin, but some of them were still able to re-proliferate. Considering the possible cooperation between Bcl- XLand MCL-1, we investigated the possibility to avoid recurrence in vitro using a multi-targeted RNAi strategy directed against these two anti-apoptotic proteins. We showed that their concomitant inhibition lead to massive apoptosis in absence of cisplatin, this multi-targeted RNAi approach being much more efficient than conventional chemotherapy. We thus demonstrated that Bcl- XL and MCL-1 cooperate to constitute together a strong molecular "bolt", which elimination could be sufficient to allow chemoresistant ovarian carcinoma cells apoptosis. Moreover, we demonstrated that in presence of a low concentration of cisplatin, the concomitant down-regulation of Bcl- XL and MCL-1 allowed a complete annihilation of tumour cells population thus avoiding subsequent recurrence in vitro in cell lines highly refractory to any type of conventional chemotherapy. Therefore, Bcl- XL and MCL-1 targeted strategies could constitute an efficient therapeutic tool for the treatment of chemoresistant ovarian carcinoma, in association with conventional chemotherapy. [source]


NTE: One target protein for different toxic syndromes with distinct mechanisms?

BIOESSAYS, Issue 8 2003
Paul Glynn
Epidemics of organophosphate-induced delayed neuropathy (OPIDN) have paralysed thousands of people. This syndrome of nerve axon degeneration is initiated by organophosphates which react with neuropathy target esterase (NTE). Dosing experiments with adult chickens raise the possibility that OPIDN is initiated by a gain-of-function mechanism. By contrast, loss of NTE function by mutation causes massive apoptosis in Drosophila brain. Now, Winrow et al. show that nte,/, mice die by mid-gestation, but nte+/, mice appear hyperactive and are more sensitive than wild-type mice to a fatal form of OP toxicity.1 Thus, different toxic syndromes may be initiated via a single target protein. BioEssays 25:742,745, 2003. © 2003 Wiley Periodicals, Inc. [source]


Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2002
Valérie Chopin
This study was performed to determine the effect and action mechanisms of sodium butyrate (NaB) on the growth of breast cancer cells. Butyrate inhibited the growth of all breast cancer cell lines analysed. It induced cell cycle arrest in G1 and apoptosis in MCF-7, MCF-7ras, T47-D, and BT-20 cells, as well as arrest in G2/M in MDA-MB-231 cells. Transient transfection of MCF-7 and T47-D cells with wild-type and antisense p53 did not modify butyrate-induced apoptosis. Pifithrin-,, which inhibits the transcriptional activity of P53, did not modify cell growth or apoptosis of MCF-7 and T47-D cells treated with butyrate. These results indicate that P53 was not involved in butyrate-induced growth inhibition of breast cancer cells. Treatment of MCF-7 cells with anti-Fas agonist antibody induced cell death, indicating that Fas was functional in these cells. Moreover, butyrate potentiated Fas-induced apoptosis, as massive apoptosis was observed rapidly when MCF-7 cells were treated with butyrate and anti-Fas agonist antibody. In addition, butyrate-induced apoptosis in MCF-7 cells was considerably reduced by anti-Fas antagonist antibody. Western blot analysis showed that butyrate increased Fas and Fas ligand levels (Fas L), indicating that butyrate-induced apoptosis may be mediated by Fas signalling. These results demonstrate that butyrate inhibited the growth of breast cancer cells in a P53-independent manner. Moreover, it induced apoptosis via the Fas/Fas L system and potentiated Fas-triggered apoptosis in MCF-7 cells. These findings may open interesting perspectives in human breast cancer treatment strategy. British Journal of Pharmacology (2002) 135, 79,86; doi:10.1038/sj.bjp.0704456 [source]


Mutations in the mitochondrial genome confer resistance of cancer cells to anticancer drugs

CANCER SCIENCE, Issue 9 2009
Satoshi Mizutani
The majority of cancer cells harbor homoplasmic somatic mutations in the mitochondrial genome. We show here that mutations in mitochondrial DNA (mtDNA) are responsible for anticancer drug tolerance. We constructed several trans -mitochondrial hybrids (cybrids) with mtDNA derived from human pancreas cancer cell lines CFPAC-1 and CAPAN-2 as well as from healthy individuals. These cybrids contained the different mitochondrial genomes with the common nuclear background. We compared the mutant and wild-type cybrids for resistance against an apoptosis-inducing reagent and anticancer drugs by exposing the cybrids to staurosporine, 5-fluorouracil, and cisplatin in vitro, and found that all mutant cybrids were more resistant to the apoptosis-inducing and anticancer drugs than wild-type cybrids. Next, we transplanted mutant and wild-type cybrids into nude mice to generate tumors. Tumors derived from mutant cybrids were more resistant than those from wild-type cybrids in suppressing tumor growth and inducing massive apoptosis when 5-fluorouracil and cisplatin were administered. To confirm the tolerance of mutant cybrids to anticancer drugs, we transplanted a mixture of mutant and wild-type cybrids at a 1:1 ratio into nude mice and examined the effect by the drugs on the drift of the ratio of mutant and wild-type mtDNA. The mutant mtDNA showed better survival, indicating that mutant cybrids were more resistant to the anticancer drugs. Thus, we propose that mutations in the mitochondrial genome are potential targets for prognosis in the administration of anticancer drugs to cancer patients. (Cancer Sci 2009; 100: 1680,1687) [source]


Acyl-CoA synthetase as a cancer survival factor: its inhibition enhances the efficacy of etoposide

CANCER SCIENCE, Issue 8 2009
Tetsuo Mashima
Lipid metabolism is often elevated in cancer cells and plays an important role in their growth and malignancy. Acyl-CoA synthetase (ACS), which converts long-chain fatty acids to acyl-CoA, is overexpressed in various types of cancer. However, the role of ACS in cancer remains unknown. Here, we found that ACS enzyme activity is required for cancer cell survival. Namely, the ACS inhibitor Triacsin c induced massive apoptosis in glioma cells while this cell death was completely suppressed by overexpression of ACSL5, the Triacsin c,resistant ACS isozyme, but not by overexpression of a catalytically inactive ACSL5 mutant. ACS inhibition by Triacsin c markedly potentiated the Bax-induced intrinsic apoptotic pathway by promoting cytochrome c release and subsequent caspase activation. These effects were abrogated by ACSL5 overexpression. Correspondingly, ACS inhibition synergistically potentiated the glioma cell death induced by etoposide, a well-known activator of apoptosis. Furthermore, in a nude mouse xenograft model, Triacsin c at a non-toxic dose enhanced the antitumor efficacy of a low-dose chemotherapy with etoposide. These results indicate that ACS is an apoptosis suppressor and that ACS inhibition could be a rational strategy to amplify the antitumor effect of etoposide. (Cancer Sci 2009) [source]