Mass Transfer (mass + transfer)

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Mass Transfer

  • external mass transfer
  • liquid mass transfer
  • oxygen mass transfer

  • Terms modified by Mass Transfer

  • mass transfer behavior
  • mass transfer characteristic
  • mass transfer coefficient
  • mass transfer efficiency
  • mass transfer kinetics
  • mass transfer limitation
  • mass transfer model
  • mass transfer parameter
  • mass transfer phenomenoN
  • mass transfer process
  • mass transfer property
  • mass transfer rate
  • mass transfer resistance

  • Selected Abstracts


    MODELING OF HEAT AND MASS TRANSFER DURING BAKING OF BISCUITS

    JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 6 2004
    MARIA ELENA SOSA-MORALES
    ABSTRACT Precooked biscuits (7 cm diameter × 2 cm thickness), preserved by freezing, were evaluated in a regional bakery. Heat and mass transfer during these processes and through the final baking were studied. Precooking was conducted at 180C for 18 min; convection and conduction were the predominant phenomena for heat transfer, with an ,, = 1.71 × 10,7 m2/s. Diffusion mechanism adequately modeled (r2 = 0.94, PEM < 2.5%) the moisture loss during cooking stage, with a D = 1.04 × 10,6 m2/s. The freezing point obtained inside a tunnel freezer (forced air at ,,40C), was , 6.73C, consistent with the predicted value. Volume changes were minimal during frozen storage because of high fat content and few variations in the freezer temperature. Final baking in conventional gas and microwave ovens were compared. Higher moisture loss and minimal color change occurred in the microwave baking. Instrumental texture of both final treatments were significantly different, in contrary to sensory evaluation (, = 0.05). The methods produced a good choice for product commercialization after baking. [source]


    EFFECTS OF RETORTING AND STORAGE ON LIQUID MASS TRANSFER IN CANNED SKIPJACK (KATSUWONAS PELAMIS) MUSCLE

    JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 4 2002
    J. W. BELL
    Mass loss of precooked tuna muscle during retorting and storage in cans impacts cannery yield and throughput. Changes in moisture content and mass of frozen, thawed, precooked tuna muscle chunks, canned in water, were determined after retorting and through five weeks of subsequent storage. Canned tuna pieces were retorted to equivalent lethality (Fo -value of four) for different time and temperature processes. Retorting at a lower temperature, longer time resulted in less mass loss than higher temperature, shorter time processes. Canned storage of up to five weeks had no effect on muscle mass or moisture content. [source]


    The Influence of Mass Transfer on a Porous Fuel Cell Electrode

    FUEL CELLS, Issue 1-2 2004
    Y.-P. Sun
    Abstract A one-dimensional model for a porous fuel cell electrode using a liquid electrolyte with dissolved reactant is presented. The model consists of a Poisson, second-order ordinary differential equation, describing the effect of the electric field and a one-dimensional; Fickian diffusion, second-order ordinary differential equation describing the concentration variation associated with diffusion. The model accounts for mass transport and heterogeneous electrochemical reaction. The solution of this model is by the approximate Adomian polynomial method and is used to determine lateral distributions of concentration, overpotential and current density and overall cell polarisation. The model is used to simulate the effects of important system and operating parameters, i.e. local diffusion rates, and mass transport coefficients and electrode polarisation behaviour. [source]


    Temperature measurements near a heating surface at high heat fluxes in subcooled pool boiling

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 1 2010
    Ayako Ono
    Abstract In previous papers (Int J Heat Mass Transfer, 2008;50:3481,3489, 2009;52: 814,821), the authors conducted measurements of liquid,vapor structures in the vicinity of a heating surface for subcooled pool boiling on an upward-facing copper surface by using a conducting probe method. We reported that the macrolayer dryout model is the most appropriate model of the CHF and that the reason why the CHF increases with increasing subcooling is most likely that a thick macrolayer is able to form beneath large vapor masses and the lowest heat flux of the vapor mass region shifts towards the higher heat flux. To develop a mechanistic model of the CHF for subcooled boiling, therefore, it is necessary to elucidate the effects of local subcooling on boiling behaviors in the vicinity of a heating surface. This paper measured local temperatures close to a heating surface using a micro-thermocouple at high heat fluxes for water boiling on an upward-facing surface in the 0 to 40 K range of subcooling. A value for the effective subcooling, defined as the local subcooling during the period while vapor masses are being formed was estimated from the detected bottom peaks of the temperature fluctuations. It was established that the effective subcooling adjacent to the surface remains at considerably lower values than the bulk liquid subcooling. This suggests that, from nucleation to coalescence, the subcooling of a bulk liquid has a smaller effect on the behavior of primary bubbles than the extent of the subcooling would appear to suggest. An empirical correlation of the effective subcooling is proposed to provide a step towards quantitative modeling of the CHF for subcooled boiling. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20277 [source]


    Charge and Mass Transfer Across the Metal/Solution Interface

    ISRAEL JOURNAL OF CHEMISTRY, Issue 3-4 2008
    Eliezer Gileadi
    Electrode reactions are characterized by charge transfer across the interface. The charge can be carried by electrons or by ions. It is shown here that when both mass and charge cross the interface, the charge must be carried by the ionic species, not by the electrons, as a result of the very large difference in the time scale for electron and ion transfer. A prime example of charge transfer by ions is metal deposition. It is proposed that ion transfer occurs by migration of the ions across the interface, under the influence of the high electrostatic field in the double layer. The rate constants observed for metal deposition are comparable to those for outer-sphere charge transfer. These unexpectedly high rate constants for metal deposition are explained by a model in which removal of the solvation shell and reduction of the effective charge on the metal ion occur in many small steps, and a make-before-break mechanism exists, which lowers the total Gibbs energy of the system as it moves along the reaction coordinate from the initial to the final state. [source]


    Hydrodynamic Cavitation to Improve Bulk Fluid to Surface Mass Transfer in a Nonimmersed Ultraviolet System for Minimal Processing of Opaque and Transparent Fluid Foods

    JOURNAL OF FOOD SCIENCE, Issue 9 2007
    P.J. Milly
    ABSTRACT:, Ultraviolet (UV)-induced chemical reactions and inactivation of microorganisms in transparent and opaque fluids are strongly dependent upon the homogenous exposure of the target species to the UV irradiation. Current UV technologies used in water disinfection and food preservation applications have limited efficacy due to suspended particles shading target species. An Ultraviolet-Shockwave PowerÔ Reactor (UV-SPR) consisting of an inner rotating rotor and a stationary quartz housing and 2 end plates was used to induce ,controlled cavitation.' Eight UV low-pressure mercury lamps spaced uniformly were installed lengthwise around the quartz housing periphery. A KI to I3,chemical dosimeter for UV was used to quantify photons received by fluid in the annular space of the SPR. UV dose (J/m2) increased from 97 J/m2 at 0 rpm to over 700 J/m2 for SPR speeds above 2400 rpm. Inactivation of E. coli 25922 in apple juice and skim milk in the UV-SPR at exit temperatures below 45 °C was greater than 4.5 and 3 logs, respectively. The UV-SPR system proved successful in increasing the mass transfer of transparent and opaque fluid to the UV irradiated surface. [source]


    Mass Transfer, Oxygen Isotopic Variation and Gold Precipitation in Epithermal System: A Case Study of the Hishikari Deposit, Southern Kyushu, Japan

    RESOURCE GEOLOGY, Issue 3 2002
    Naotatsu SHIKAZONO
    Abstract: Transportation of various kinds of elements occurred in wall rocks (Quaternary andesites) during the hydrothermal alteration accompanied by the Hishikari epithermal gold mineralization. For example, K2O and MgO contents of wall rocks decrease away from the gold-quartz veins, while (CaO+Na2O) content increases, and SiO2 content is variable near the veins. Hydrothermal alteration zoning and bulk compositional variations in wall rocks suggest that the mixing of hydrothermal solution and acidic groundwater took place an important role as the cause for the hydrothermal alteration and bulk compositional variations. The relationship between dissolved silica concentration and temperature of hydrothermal solution mixed with groundwater is obtained based on precipitation kinetics-fluid flow,mixing model, and the computed results are compared with the distribution of SiO2 minerals (quartz and cristobalite) in the hydrothermal alteration zones. This comparison suggests that the most reasonable flow rate of fluids migrating through hydrothermal alteration zones, and A/M (A: surface area of rocks interacting with fluid, M: mass of fluid) are estimated to be ca. 10 -4.2 m/sec, and ca. 0.10 m2/kg, respectively. The mixing of two fluids (hydrothermal solution and acidic groundwater) can also explain ,18O zoning in the altered country rocks, hydrothermal alteration zoning from K-feldspar through K-mica to kaolinite from the center (veins) to margin, and deposition of gold. [source]


    The Effect of Bed Temperature on Mass Transfer between the Bubble and Emulsion Phases in a Fluidized Bed

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2003
    Wenyuan Wu
    Abstract The rate of interphase mass transfer between the bubble and emulsion phases of a bubbling fluidized bed is of primary importance in all models for fluidized bed reactors. Many experimental studies have been reported, however, all these investigations have been carried out in fluidized beds operated at room temperature. In this work, the effect of the bed temperature on the interphase mass transfer is reported. Single bubbles containing argon , used as a tracer , were injected into an incipiently fluidized bed maintained at the required temperature. The change in argon concentration in the bubble was measured using a suction probe connected to a mass spectrometer. The effects of bed particle type and size, bubble size, and bed temperature on the mass transfer coefficient were examined experimentally. The interphase mass transfer coefficient was found to decrease with the increase in bed temperature and bubble size, and increase slightly with increase in particle size. Experimental data obtained in this study were compared with some frequently used correlations for estimation of the mass transfer coefficient. Le taux de transfert de matière interphasique entre les phases à bulles et à émulsion d'un lit fluidisé bullant est de première importance dans tous les modèles de réacteurs à lits fluidisés. Beaucoup d'études expérimentales ont été présentées; toutefois, toutes ces recherches ont été menées dans des lits fluidisés fonctionnant à la température ambiante. Dans ce travail, on décrit l'effet de la température du lit sur le taux de transfert de matière. Des bulles simples contenant de l'argon &#0150; utilisé comme traceur &#0150; ont été injectées dans un lit fluidisé naissant maintenu à la température requise. Le changement de concentration d'argon dans la bulle est mesuré à l'aide d'une sonde de succion reliée à un spectromètre de masse. Les effets du type et de la taille des particules de lit, de la taille des bulles et de la température de lit sur le coefficient de transfert de matière sont examinés de façon expérimentale. On a trouvé que le coefficient de transfert de matière interphasique diminuait avec l'augmentation de la température du lit et de la taille des bulles, et augmentait légèrement avec l'augmentation de la taille des particules. Les données expérimentales obtenues dans cette étude sont comparées avec quelques corrélations fréquemment utilisées pour l'estimation du coefficient de transfert de matière. [source]


    Dynamics of Interfacial Mass Transfer in a Gas-Dispersed System

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
    Katsumi Tsuchiya
    Abstract Dynamics of mass transfer across gas,liquid interface in a gas-dispersed system are examined via high-sensitivity, high-speed imaging. The dispersive dynamics of the dissolved component, CO2, into the liquid phase are visualized using laser-induced fluorescence (LIF) with pH-sensitive pyrene (HPTS) for both a single- and multi-bubble systems. The fluctuating dynamics of the bubble surface are characterized by capillary waves associated with the bubble motion. Enhancement of the mass transfer is found to be associated with the (nonlinear) wave formation, influence of which could be included in modeling the mass-transfer coefficient, apart from an physical account of the near-surface concentration gradient. La dynamique du transfert de matière à l'interface gaz-liquide dans un système dispersé par le gaz a été étudiée par des techniques d'imagerie à haute sensibilité et à haute vitesse. La dynamique de dispersion du composant dissous, le CO2, dans la phase liquide a été visualisée par fluorescence induite par laser (LIF) avec du pyrène sensible au pH (HPTS) pour des systèmes à bulles uniques et multiples. La dynamique de la fluctuation de la surface des bulles a été caractérisée par des ondes capillaires associées au déplacement des bulles. On a trouvé que l'amélioration du transfert de matière s'accompagnait d'une formation de vagues (non linéaires); l'influence de ces vagues pourrait être incluse dans la modélisation du coefficient de transfert de matière, en plus de la prise en compte physique du gradient de concentration près de la surface. [source]


    Carbon Monoxide Mass Transfer for Syngas Fermentation in a Stirred Tank Reactor with Dual Impeller Configurations

    BIOTECHNOLOGY PROGRESS, Issue 3 2007
    Andrew J. Ungerman
    This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding. [source]


    Mass Transfer in Blood Oxygenators Using Blood Analogue Fluids

    BIOTECHNOLOGY PROGRESS, Issue 4 2002
    S. Ranil Wickramasinghe
    Mass transfer correlations for hollow fiber blood oxygenators have been determined experimentally using Newtonian and non-Newtonian blood analogue fluids. The Newtonian fluids consisted of deionized water and glycerol/water mixtures. The non-Newtonian fluids were prepared by adding small amounts of xanthan gum to the Newtonian blood analogue fluids. The rheological behavior of the non-Newtonian blood analogue fluids was modeled using the power law. The diffusion of oxygen into and out of the Newtonian and non-Newtonian blood analogue fluids has been studied. The liquid stream flowed outside and across bundles of woven hollow fibers, while the gas stream flowed inside the fibers. [source]


    Gas-Liquid Mass Transfer in a Slurry Bubble Column at High Slurry Concentrations and High Gas Velocities

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 9 2005
    C. O. Vandu
    Abstract The volumetric mass transfer coefficient kLa in a 0.1,m-diameter bubble column was studied for an air-slurry system. A C9 -C11n -paraffin oil was employed as the liquid phase with fine alumina catalyst carrier particles used as the solid phase. The n -paraffin oil had properties similar to those of the liquid phase in a commercial Fischer-Tropsch reactor under reaction conditions. The superficial gas velocity UG was varied in the range of 0.01 to 0.8,m/s, spanning both the homogeneous and heterogeneous flow regimes. The slurry concentration ,S ranged from 0 to 0.5. The experimental results obtained show that the gas hold-up ,G decreases with an increase in slurry concentration, with this decrease being most significant when ,S < 0.2. kLa/,G was found to be practically independent of the superficial gas velocity when UG > 0.1,m/s is taking on values predominantly between 0.4 and 0.6,s,1 when ,S = 0.1 to 0.4, and 0.29,s,1, when ,S = 0.5. This study provides a practical means for estimating the volumetric mass transfer coefficient kLa in an industrial-size bubble column slurry reactor, with a particular focus on the Fischer-Tropsch process as well as high gas velocities and high slurry concentrations. [source]


    Hydrodynamics and Mass Transfer in Gas-Liquid-Solid Circulating Fluidized Beds

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 12 2003
    Z. Liu
    Abstract Although extensive work has been performed on the hydrodynamics and gas-liquid mass transfer in conventional three-phase fluidized beds, relevant documented reports on gas-liquid-solid circulating fluidized beds (GLSCFBs) are scarce. In this work, the radial distribution of gas and solid holdups were investigated at two axial positions in a GLSCFB. The results show that gas bubbles and solid particles distribute uniformly in the axial direction but non-uniformly in the radial direction. The radial non-uniformity demonstrates a strong factor on the gas-liquid mass transfer coefficients. A local mass transfer model is proposed to describe the gas-liquid mass transfer at various radial positions. The local mass transfer coefficients appear to be symmetric about the central line of the riser with a lower value in the wall region. The effects of gas flow rates, particle circulating rates and liquid velocities on gas-liquid mass transfer have also been investigated. [source]


    Mass Transfer in a Flat Gas/Liquid Interface using non-Newtonian Media

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 10 2003
    D. Gómez-Díaz
    Abstract Gas/liquid mass transfer has been investigated using a stirred vessel gas/liquid contactor using non-Newtonian media and carbon dioxide as absorbent and gas phase, respectively. The volumetric mass transfer coefficients at different operational variables have been determined. Non-Newtonian media (liquid phase) were prepared as aqueous solutions of sodium carboxymethyl cellulose salt. The influence of the rheological properties, polymer concentration, stirring rate, and gas flow rate on mass transfer was studied for these liquid phases. Kinematic viscosity and density experimental data were used to calculate the average molecular weight corresponding to the polymer employed. The Ostwald model has been used to fit the rheological behavior of aqueous solutions of the polymer employed as absorbent phase. Reasonably good agreement was found between the predictions of the proposed models and the experimental data of mass transfer coefficients. [source]


    Mathematical modeling of solid oxide fuel cells at high fuel utilization based on diffusion equivalent circuit model

    AICHE JOURNAL, Issue 5 2010
    Cheng Bao
    Abstract Mass transfer and electrochemical phenomena in the membrane electrode assembly (MEA) are the core components for modeling of solid-oxide fuel cell (SOFC). The general MEA model is simply governed with the Stefan-Maxwell equation for multicomponent gas diffusion, Ohm's law for the charge transfer and the current-overpotential equation for the polarization calculation. However, it has obvious discrepancy at high-fuel utilization or high-current density. An advanced MEA model is introduced based on the diffusion equivalent circuit model. The main purpose is to correct the real-gas concentrations at the triple-phase boundary by assuming that the resistance of surface diffusion is in series with that of the gaseous bulk diffusion. Thus, it can obtain good prediction of cell performance in a wide range by avoiding the decrement of effective gas diffusivity via unreasonable increment of the electrode tortuosity in the general MEA model. The mathematical model has been validated in the cases of H2H2O, COCO2 and H2CO fuel system. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


    Nitration of nitrobenzene at high-concentrations of sulfuric acid: Mass transfer and kinetic aspects

    AICHE JOURNAL, Issue 3 2010
    M. Rahaman
    Abstract This article reports studies on mass transfer and kinetics of nitration of nitrobenzene at high concentrations of sulfuric acid in a batch reactor at different temperatures. The effects of concentration of sulfuric acid, speed of stirring, and temperature on mass transfer coefficient were investigated. The kinetics of nitration under homogenized conditions was studied at different sulfuric acid concentrations at these temperatures. The reaction rate constants were determined. The variation of rate constant with sulfuric acid concentration was explained by the Mc function. The activation energies of the reactions were determined from the Arrhenius plots. The regimes of the reactions were determined using the values of the mass transfer coefficients and the reaction rate constants. A model was developed for simultaneous mass transfer and chemical reaction in the aqueous phase. The yields of the three isomers of dinitrobenzene were determined, and the variation of isomer distribution with sulfuric acid concentration and temperature was analyzed. This work demonstrates that more than 90% conversion of nitrobenzene is possible at high-sulfuric acid concentrations resulting in high yield of the product even at moderate temperatures and at low speeds of stirring. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


    Effect of Taylor vortices on mass transfer from a rotating cylinder

    AICHE JOURNAL, Issue 11 2005
    R. Srinivasan
    Abstract Mass transfer from solids, which has important applications in a number of chemical and pharmaceutical industries, has been studied experimentally and semiempirically under turbulent flow conditions, and correlations are available in the literature to calculate the mass-transfer coefficients from pellets, rotating cylinders and disks etc. However, mass transfer under laminar flow has not been sufficiently addressed. One of the difficulties here is the strong Reynolds number dependence of the flow pattern, for example, due to the onset of Taylor vortices for the case of a rotating cylinder. This problem is circumvented by using a computational fluid dynamics (CFD)-based solution of the governing equations for the case of a cylinder rotating inside a stationary cylindrical outer vessel filled with liquid. The parameters cover a range of Reynolds number (based on the cylinder diameter, and the tangential speed of the cylinder), Schmidt number and the ratio of the outer to inner cylinder diameters. The results confirm that the circumferential velocity profile is a strong function of the Reynolds number and varies from a nearly Couette-type flow at very low Reynolds numbers to a boundary layer-like profile at high Reynolds numbers. The onset of Taylor vortices has a strong effect on the flow field and the mass-transfer mode. The calculations show that the Sherwood number has a linear dependence on the Reynolds number in the Couette-flow regime, and roughly square-root dependence after the onset of Taylor vortices. Correlations have been proposed to calculate the Sherwood number taking account of these effects. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source]


    Sorption and Diffusion of Propylene and Ethylene in Heterophasic Polypropylene Copolymers

    MACROMOLECULAR SYMPOSIA, Issue 1 2007
    Michael Bartke
    Abstract Summary: Sorption experiments of ethylene and propylene in different polypropylene powder samples, both homopolymer and heterophasic copolymers with different rubber content, have been carried out in a high-pressure magnetic suspension balance at 10 bars pressure and 70,°C. The gross solubilities measured can be well correlated with the rubber content of the polymer samples. Solubility of ethylene and propylene in the rubber phase differ from solubility in the amorphous fraction of the homopolymer, especially the concentration ratio of propylene to ethylene differs significantly between rubber phase and amorphous fraction of the homopolymer. From the slope of monomer uptake, information on kinetics of mass-transfer can be gained. No significant differences were observed in terms of mass-transfer for ethylene and propylene. With increasing rubber content, effective diffusion coefficients increased slightly. By combined sorption studies with powder samples and compressed films, information about both effective diffusion coefficients and the effective length scale of diffusion could be gained. It could be shown, that the particle radius is not the characteristic length of diffusion in the studied powder samples. Mass transfer of nearly all samples could be described by a constant diffusion length of 120 to 130 µm, independently on particle size. This indicates that the effective scale of diffusion in polymer particles is in between microparticle and macroparticle scale used in classical particle modeling. [source]


    On the evolution of the nova-like variable AE Aquarii

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2002
    P. J. Meintjes
    Abstract A possible evolution for the enigmatic cataclysmic variable AE Aquarii is considered that may put into context the long orbital period and short white dwarf rotation period compared with other DQ Her systems. It has been shown that mass transfer could have been initiated when the secondary KIV,V star was already somewhat evolved when it established Roche lobe contact. In this initial phase the orbital period of the system was probably Porb,i, 8.5 h, and the white dwarf rotation period P*,i > 1 h. Mass transfer in the form of diamagnetic gas blobs will result in an initial discless accretion process, resulting in an efficient drain of the binary orbital angular momentum. Since the initial mass ratio of the binary was probably qi, 0.8, a high mass transfer rate and a slow expansion of the Roche lobe of the secondary star followed, accompanied by a fast expanding secondary following the mass loss. This could have resulted in the KIV,V secondary flooding its Roche surface, causing a run-away mass transfer of that lasted for approximately , during which time the binary expanded to an orbital period of approximately Porb, 11 h. During this phase the mass accretion rate on to the surface of the white dwarf most probably exceeded the critical value for stable nuclear burning , which could have resulted in AE Aqr turning into an ultrasoft X-ray source. The high mass transfer terminated when a critical mass ratio of qcrit= 0.73 was reached. Disc torques spun-up the white dwarf to a period close to 33 s within the time-scale before the high mass transfer shut down when qcrit was reached. The decrease in the mass loss of the secondary allowed it to re-establish hydrostatic equilibrium on the dynamical time-scale (fraction of a day). From this point when qcrit is reached the mass transfer and binary evolution proceed at a slower rate since mass transfer from the secondary star is driven by magnetic braking of the secondary on a time-scale , which is the same as the thermal time-scale tth, 6.3 × 107 yr, i.e. the time-scale on which the secondary shrinks to restore its perturbed thermal equilibrium after the high mass loss. The significantly lower mass transfer in this phase will result in mass ejection from the system. This propeller,ejector action erodes the rotational kinetic energy of the white dwarf, channelling it into mass ejection and non-thermal activity, which explains the non-thermal outbursts that are observed at radio wavelengths and occasionally also at TeV energies. [source]


    Mass transfer from theophylline hydrogels of a -PVA/H2O and a -PVA/NaCl/H2O system on heating

    POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 10 2003
    Sharif M. Shaheen
    Abstract Theophylline hydrogels of atactic -poly(vinyl alcohol) (a -PVA)/H2O and a -PVA/NaCl/H2O systems were prepared followed by cyclic freezing (,30°C for 16,hr),thawing (at room temperature for 8,hr) and one cycle gelation (at ,20°C for 24,hr) processes, respectively. In order to prepare xerogels (dried hydrogels) of these hydogel systems, an apparently first-order mass transfer phenomenon of water as evaporation was observed for a -PVA/H2O hydrogel system, while heating at 60°C. The rate of evaporation decreased with increasing time in hyperbolic fashion. The total surface area (both lateral and two end surfaces of hydrogel matrix disc) decreased linearly for the first 90,min and thereafter had a tendency towards the steady-state. The total mass flux showed time dependent linear reduction phenomenon, which is a characteristic physical behavior for these hydrogel systems on heat treatment. When NaCl was included in a -PVA/H2O system mass transfer of water followed fourth-order polynomial. But in consideration of a comparative study, sustained mass transfer was found from the hydrogel matrices of a -PVA/H2O/NaCl system (gelation at ,20°C). Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Mass transfer during air humidification in spouted beds

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2009
    Andrzej Kmiec
    Abstract This article presents the results obtained from analysing the impacts of bed media, static bed height, and the water-to-air mass flow ratios on the mass transfer coefficient and Colburn factor. The experimental data were compared with the correlations for mass transfer and the analogy between heat and mass transfer in conical spouted beds described earlier in literature. Moreover, the aim of the article is to present some new correlations of dimensionless groups for description of mass transfer and analogy of heat and mass transfer in sprayed spouted beds, which were developed by the authors. Cet exposé présente les résultats obtenus suite à l'analyse de l'impact du médium et de la hauteur statique du lit, des rapports d'écoulement de la masse eau-air sur le coefficient de transfert de masse et le facteur de Colburn. Les données expérimentales ont été comparées aux corrélations pour le transfert de masse et à l'analogie entre le transfert de chaleur et de masse dans des lits jaillissants coniques décrits plus tôt dans la documentation. En outre, le but de l'article est de présenter quelques nouvelles corrélations de groupes adimensionnels, développées par les auteurs, en vue de décrire le transfert de masse et l'analogie du transfert de chaleur et de masse dans les lits jaillissants pulvérisés. [source]


    Optimization of mass transfer for toxin removal and immunoprotection of hepatocytes in a bioartificial liver

    BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009
    Geir I. Nedredal
    Abstract This study was designed to determine optimal operating conditions of a bioartificial liver (BAL) based on mass transfer of representative hepatotoxins and mediators of immune damage. A microprocessor-controlled BAL was used to study mass transfer between patient and cell compartments separated by a hollow fiber membrane. Membrane permeability (70, 150, or 400,kDa molecular weight cut-off,MWCO), membrane convection (high: 50,mL/min; medium: 25,mL/min; low: 10,mL/min; diffusion: 0,mL/min), and albumin concentration in the cell compartment (0.5 or 5,g%) were considered for a total of 24 test conditions. Initially, the patient compartment contained pig plasma supplemented with ammonia (0.017,kDa), unconjugated bilirubin (0.585,kDa), conjugated bilirubin (0.760,kDa), TNF-, (17,kDa), pig albumin (67,kDa), pig IgG (147,kDa), and pig IgM (900,kDa). Mass transfer of each substance was determined by its rate of appearance in the cell compartment. Membrane fouling was assessed by dextran polymer technique. Of the three tested variables (membrane pore size, convection, and albumin concentration), membrane permeability had the greatest impact on mass transfer (P,<,0.001). Mass transfer of all toxins was greatest under high convection with a 400,kDa membrane. Transfer of IgG and IgM was insignificant under all conditions. Bilirubin transfer was increased under high albumin conditions (P,=,0.055). Fouling of membranes ranged from 7% (400,kDa), 24% (150,kDa) to 62% (70,kDa) during a 2-h test interval. In conclusion, optimal toxin removal was achieved under high convection with a 400-kDa membrane, a condition which should provide adequate immunoprotection of hepatocytes in the BAL. Biotechnol. Bioeng. 2009; 104: 995,1003. © 2009 Wiley Periodicals, Inc. [source]


    Growth of Rhodospirillum rubrum on synthesis gas: Conversion of CO to H2 and poly-,-hydroxyalkanoate

    BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2007
    Young S. Do
    Abstract To examine the potential use of synthesis gas as a carbon and energy source in fermentation processes, Rhodospirillum rubrum was cultured on synthesis gas generated from discarded seed corn. The growth rates, growth and poly-,-hydroxyalkanoates (PHA) yields, and CO oxidation/H2 evolution rates were evaluated in comparison to the rates observed with an artificial synthesis gas mixture. Depending on the gas conditioning system used, synthesis gas either stimulated or inhibited CO-oxidation rates compared to the observations with the artificial synthesis gas mixture. Inhibitory and stimulatory compounds in synthesis gas could be removed by the addition of activated charcoal, char-tar, or char-ash filters (char, tar, and ash are gasification residues). In batch fermentations, approximately 1.4 mol CO was oxidized per day per g cell protein with the production of 0.75 mol H2 and 340 mg PHA per day per g cell protein. The PHA produced from R. rubrum grown on synthesis gas was composed of 86% ,-hydroxybutyrate and 14% ,-hydroxyvalerate. Mass transfer of CO into the liquid phase was determined as the rate-limiting step in the fermentation. Biotechnol. Bioeng. 2007;97: 279,286. © 2006 Wiley Periodicals, Inc. [source]


    Joule heating in electrokinetic flow

    ELECTROPHORESIS, Issue 1 2008
    Xiangchun Xuan ProfessorArticle first published online: 30 NOV 200
    Abstract Electrokinetic flow is an efficient means to manipulate liquids and samples in lab-on-a-chip devices. It has a number of significant advantages over conventional pressure-driven flow. However, there exists inevitable Joule heating in electrokinetic flow, which is known to cause temperature variations in liquids and draw disturbances to electric, flow and concentration fields via temperature-dependent material properties. Therefore, both the throughput and the resolution of analytic studies performed in microfluidic devices are affected. This article reviews the recent progress on the topic of Joule heating and its effect in electrokinetic flow, particularly the theoretical and experimental accomplishments from the aspects of fluid mechanics and heat/mass transfer. The primary focus is placed on the temperature-induced flow variations and the accompanying phenomena at the whole channel or chip level. [source]


    The influence of large convective eddies on the surface-layer turbulence

    THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 618 2006
    S. S. Zilitinkevich
    Abstract Close to the surface large coherent eddies consisting of plumes and downdraughts cause convergent winds blowing towards the plume axes, which in turn cause wind shears and generation of turbulence. This mechanism strongly enhances the convective heat/mass transfer at the surface and, in contrast to the classical formulation, implies an important role of the surface roughness. In this context we introduce the stability-dependence of the roughness length. The latter is important over very rough surfaces, when the height of the roughness elements becomes comparable with the large-eddy Monin,Obukhov length. A consistent theoretical model covering convective regimes over all types of natural surfaces, from the smooth still sea to the very rough city of Athens, is developed; it is also comprehensively validated against data from measurements at different sites and also through the convective boundary layer. Good correspondence between model results, field observations and large-eddy simulation is achieved over a wide range of surface roughness lengths and convective boundary-layer heights. Copyright © 2007 Royal Meteorological Society [source]


    Optimization of control parameters of cadmium zinc telluride Bridgman single crystal growth

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2007
    Liu Juncheng
    Abstract The temperature gradient within a furnace chamber and the crucible pull rate are the key control parameters for cadmium zinc telluride Bridgman single crystal growth. Their effects on the heat and mass transfer in front of the solid-liquid interface and the solute segregation in the grown crystal were investigated with numerical modeling. With an increase of the temperature gradient, the convection intensity in the melt in front of the solid-liquid interface increases almost proportionally to the temperature gradient. The interface concavity decreases rapidly at faster crucible pull rates, while it increases at slow pull rates. Moreover, the solute concentration gradient in the melt in front of the solid-liquid interface decreases significantly, as does the radial solute segregation in the grown crystal. In general, a decrease of the pull rate leads to a strong decrease of the concavity of the solid-liquid interface and of the radial solute segregation in the grown crystal, while the axial solute segregation in the grown crystal increases slightly. A combination of a low crucible pull rate with a medium temperature gradient within the furnace chamber will make the radial solute segregation of the grown crystal vanish. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Global simulation of a Czochralski furnace for silicon crystal growth against the assumed thermophysical properties

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 7 2006
    Y. R. Li
    Abstract In order to understand the effects of the thermophysical properties of the melt on the transport phenomena in the Czochralski (Cz) furnace for the single crystal growth of silicon, a set of global analyses of momentum, heat and mass transfer in small Cz furnace (crucible diameter: 7.2 cm, crystal diameter: 3.5 cm, operated in a 10 Torr argon flow environment) was carried out using the finite-element method. The global analysis assumed a pseudosteady axisymmetric state with laminar flow. The results show that different thermophysical properties will bring different variations of the heater power, the deflection of the melt/crystal interface, the axial temperature gradient in the crystal on the center of the melt/crystal interface and the average oxygen concentration along the melt/crystal interface. The application of the axial magnetic field is insensitive to this effect. This analysis reveals the importance of the determination of the thermophysical property in numerical simulation. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Influence of internal radiation on the heat transfer during growth of YAG single crystals by the Czochralski method

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2003
    Z. Galazka
    Abstract Heat and mass transfer taking place during growth of Y3Al5O12 (YAG) crystals by the Czochralski method, including inner radiation, is analyzed numerically using a Finite Element Method. For inner radiative heat transfer through the crystal the band approximation model and real transmission characteristics, measured from obtained crystals, are used. The results reveal significant differences in temperature and melt flow for YAG crystals doped with different dopands influencing the optical properties of the crystals. When radiative heat transport through the crystal is taken into account the melt-crystal interface shape is different from that when the radiative transport is not included. Its deflection remains constant over a wide range of crystal rotation rates until it finally rapidly changes in a narrow range of rotation rates. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Adsorptive Stripping Analysis of Riboflavin at Electrically Heated Graphite Cylindrical Electrodes

    ELECTROANALYSIS, Issue 21 2007
    Shao-Hua Wu
    Abstract Electrically heated graphite cylindrical electrodes (HGCEs) made from ground pencil leads have been used to perform adsorptive stripping square wave voltammetry (SWV) measurements of trace riboflavin (RF). The SWV stripping peak current was significantly enhanced with increasing the electrode temperature only during preconcentration step. This enhancement was due to the forced thermal convection induced by heating the electrode rather than the bulk solution. It is the thermal convection that has the ability to improve mass transfer and facilitate adsorption thus enhance stripping responses. It was found that the detection limit of 5×10,9,M (S/N=3) could be obtained at an electrode temperature of 72,°C during 5,min accumulation, more than one magnitude lower than that at 22,°C (room temperature), the sensitivity could be enhanced ca. eight or four folds for two different RF concentration ranges. So it is possible to develop a new highly sensitive method to determine riboflavin at HGCEs. Such HGCEs were also successfully used to determine RF in multivitamin tablets. [source]


    Dynamic modelling of bacterial cellulose formation

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 4 2009
    Michael Hornung
    Abstract The interest in cellulose produced by bacteria from surface cultures has increased steadily in recent years because of its potential for use in medicine and cosmetics. Unfortunately, the low yield of this production process has limited the commercial usefulness of bacterial cellulose. The aim of this paper is to show the effect of substrate mass transfer on the growth of the bacteria and on their physiological potential for product formation by means of a dynamic mathematical model. [source]