Home About us Contact | |||
Mass Spectrometry Imaging (mass + spectrometry_imaging)
Selected AbstractsAnimal urine as painting materials in African rock art revealed by cluster ToF-SIMS mass spectrometry imagingJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 8 2010Vincent Mazel Abstract The rock art site at the village of Songo in Mali is a very important Dogon ritual place where, since the end of the nineteenth century until today, takes place the ceremony of circumcision. During these ceremonies, paintings are performed on the walls of the shelter with mainly three colors: red, black and white. Ethnological literature mentions the use of animal urine of different species such as birds, lizards or snakes as a white pigment. Urine of these animals is mainly composed of uric acid or urate salts. In this article, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to compare uric acid, snake urine and a sample of a white pigment of a Dogon painting coming from the rock art site of Songo. ToF-SIMS measurements in both positive and negative ion modes on reference compounds and snake urine proved useful for the study of uric acid and urate salts. This method enables to identify unambiguously these compounds owing to the detection in negative ion mode of the ion corresponding to the deprotonated molecule ([M , H], at m/z 167.01) and its fragment ions. Moreover, the mass spectra obtained in positive ion mode permit to differentiate uric acid and urate salts on the basis of specific ions. Applying this method to the Dogon white pigments sample, we show that the sample is entirely composed of uric acid. This proves for the first time, that animal urine was used as a pigment by the Dogon. The presence of uric acid instead of urate salts as normally expected in animal urine could be explained by the preparation of the pigment for its application on the stone. Copyright © 2010 John Wiley & Sons, Ltd. [source] Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sectionsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2009Marie-Claude Djidja Abstract The identification of proteins involved in tumour progression or which permit enhanced or novel therapeutic targeting is essential for cancer research. Direct MALDI analysis of tissue sections is rapidly demonstrating its potential for protein imaging and profiling in the investigation of a range of disease states including cancer. MALDI-mass spectrometry imaging (MALDI-MSI) has been used here for direct visualisation and in situ characterisation of proteins in breast tumour tissue section samples. Frozen MCF7 breast tumour xenograft and human formalin-fixed paraffin-embedded breast cancer tissue sections were used. An improved protocol for on-tissue trypsin digestion is described incorporating the use of a detergent, which increases the yield of tryptic peptides for both fresh frozen and formalin-fixed paraffin-embedded tumour tissue sections. A novel approach combining MALDI-MSI and ion mobility separation MALDI-tandem mass spectrometry imaging for improving the detection of low-abundance proteins that are difficult to detect by direct MALDI-MSI analysis is described. In situ protein identification was carried out directly from the tissue section by MALDI-MSI. Numerous protein signals were detected and some proteins including histone H3, H4 and Grp75 that were abundant in the tumour region were identified. [source] Examination of the distribution of nicosulfuron in sunflower plants by matrix-assisted laser desorption/ionisation mass spectrometry imagingRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2009David M. G. Anderson Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) has been used to image the distribution of the pesticide nicosulfuron (2-[[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]- N,N -dimethyl-3-pyridinecarboxamide) in plant tissue using direct tissue imaging following root and foliar uptake. Sunflower plants inoculated with nicosulfuron were horizontally sectioned at varying distances along the stem in order to asses the extent of translocation; uptake via the leaves following foliar application to the leaves and uptake via the roots from a hydroponics system were compared. An improved sample preparation methodology, encasing samples in ice, allowed sections from along the whole of the plant stem from the root bundle to the growing tip to be taken. Images of fragment ions and alkali metal adducts have been generated that show the distribution of the parent compound and a phase 1 metabolite in the plant. Positive and negative controls have been included in the images to confirm ion origin and prevent false-positive results which could originate from endogenous compounds present within the plant tissue. Copyright © 2009 John Wiley & Sons, Ltd. [source] |