Mass Removal (mass + removal)

Distribution by Scientific Domains


Selected Abstracts


Distribution and biomass of an underfished vendace, Coregonus albula, population in a mesotrophic German reservoir

FISHERIES MANAGEMENT & ECOLOGY, Issue 3 2005
M. B. SCHMIDT
Abstract, The distribution and overall biomass of an underfished vendace, Coregonus albula L., population in the mesotrophic Henne Reservoir (Germany) was studied using hydroacoustics and gill nets. Additionally, midwater trawling was carried out. Overall fish biomass, based on five hydroacoustic surveys (June to September 2002), ranged from 188 kg ha,1 in early August to 302 kg ha,1 in September 2002. The overall mean fish biomass was 256 kg ha,1 (±48 kg ha,1 SD). Biomass of fish smaller than 25 cm total length (mostly vendace) varied from 56 kg ha,1 in August to 99 kg ha,1 in September, with an overall mean fish biomass of 74 kg ha,1 (±17 kg ha,1 SD). The echograms showed temporal variation in fish distribution in Henne Reservoir. In June, fish were fairly evenly distributed over the whole reservoir but in September a dense aggregation of fish (mostly vendace) was found in the deeper water layers near the dam. The distribution of vendace stock, its impact on water quality and fisheries management, biomanipulation and effort for mass removal are discussed. [source]


Cladoceran community responses to biomanipulation and re-oligotrophication in Lake Vesijärvi, Finland, as inferred from remains in annually laminated sediment

FRESHWATER BIOLOGY, Issue 6 2010
MIRVA NYKÄNEN
Summary 1. We studied the role of zooplankton in biomanipulation and the subsequent recovery phase in the Enonselkä basin of Lake Vesijärvi, using subfossil cladocerans in annually laminated sediment. Measures to restore the Enonselkä basin included reduction in external nutrient loading and mass removal of plankti- and benthivorous fish. Water clarity increased and the lake changed from a eutrophic to a mesotrophic state. However, some signs of increased turbidity were observed after 5,10 years of successful recovery. 2. Annual laminae in a freeze core sample were identified and sliced, based on the seasonal succession of diatoms. Cladoceran remains and rotifer eggs were counted, and Daphnia ephippia and Eubosmina and Bosmina ephippia and carapaces were measured. Annual changes in pelagic species composition were studied with principal component analysis. Individual species abundance, size measurements and various cladoceran-based indices or ratios (commonly used to reconstruct changes in trophic state and fish predation) were tested for change between four distinct periods: I (1985,1988) dense fish stocks, poor water quality; II (1989,1992) fish removal; III (1993,1997) low fish density, improved water quality; IV (1998,2002) slightly increased fish density and poorer water quality. 3. After the removal of fish, the mean size of Daphnia ephippia and Eubosmina crassicornis ephippia and carapaces increased significantly. In contrast, the percentage of Daphnia did not increase. When based on ephippia, the ratio Daphnia/(Daphnia + E. crassicornis) increased, but the interpretation was obscured by the tolerance of fish predation by small Daphnia and by the fact that bosminids were the preferred food of roach. Moreover, ephippial production by E. crassicornis decreased in recent years. 4. The abundance of Diaphanosoma brachyurum and Limnosida frontosa increased significantly after the fish population was reduced, while that of Ceriodaphnia and rotifers decreased. 5. The expanding littoral vegetation along with improved water clarity was clearly reflected in the concentration of littoral species in the deep sediment core. The species diversity index for the entire subfossil community also increased. 6. The period of faltering recovery was characterised by greater interannual variability and an increased percentage of rotifers. Nevertheless, the mean sizes of Daphnia ephippia and E. crassicornis ephippia and carapaces indicated a low density of fish. The deteriorating water quality was apparently related to multiple stressors in the catchment after rehabilitation, such as intensified lakeshore building, as well as to exceptional weather conditions, challenging the management methods in use. [source]


Permanganate Treatment of an Emplaced DNAPL Source

GROUND WATER MONITORING & REMEDIATION, Issue 4 2007
Neil R. Thomson
In situ chemical oxidation (ISCO) using permanganate is one of the few promising technologies that have recently appeared with the capability of aggressively removing mass from nonaqueous phase liquid (NAPL) source zones. While NAPL mass in regions of the treatment zone where delivery is dominated by advection can be removed rather quickly, the rate of mass removal from stagnant zones is diffusion controlled. This gives rise to partial mass removal and a concomitant reduction in the NAPL mass, downgradient ground water concentrations, and the dissolution rate associated with the source zone. Therefore, monitoring the performance of a permanganate ISCO treatment system is important to maintain the desired efficiency and to establish a treatment end point. In this paper, we illustrate the use of various monitoring approaches to assess the performance of a pilot-scale investigation that involved treatment of a multicomponent NAPL residual source zone with permanganate using a ground water recirculation system for 485 d. Ongoing treatment performance was assessed using permanganate and chloride concentration data obtained from extraction wells, 98 piezometers located approximately 1 m downgradient from the source, and ground water profiling. At the completion of treatment, 23 intact soil cores were extracted from the source zone and used to determine the remaining NAPL mass and manganese deposition. Based on the data collected, more than 99% of the initial NAPL mass was removed during treatment; however, remnant NAPL was sufficient to generate a small but measurable dissolved phase trichloroethene (TCE) and perchloroethene (PCE) plume. As a result of treatment, the ambient-gradient discharge rates were reduced by 99% for TCE and 89% for PCE relative to baseline conditions. The lack of complete source zone oxidation was presumed to be the result of dissolution fingers, which channeled the permanganate solution through the source zone preventing direct contact with the NAPL and giving rise to diffusion-limited mass removal. [source]


Source Zone Natural Attenuation at Petroleum Hydrocarbon Spill Sites,I: Site-Specific Assessment Approach

GROUND WATER MONITORING & REMEDIATION, Issue 4 2006
Paul Johnson
This work focuses on the site-specific assessment of source zone natural attenuation (SZNA) at petroleum spill sites, including the confirmation that SZNA is occurring, estimation of current SZNA rates, and anticipation of SZNA impact on future ground water quality. The approach anticipates that decision makers will be interested in answers to the following questions: (1) Is SZNA occurring and what processes are contributing to SZNA? (2) What are the current rates of mass removal associated with SZNA? (3) What are the longer-term implications of SZNA for ground water impacts? and (4) Are the SZNA processes and rates sustainable? This approach is a data-driven, macroscopic, multiple-lines-of-evidence approach and is therefore consistent with the 2000 National Research Council's recommendations and complementary to existing dissolved plume natural attenuation protocols and recent modeling work published by others. While this work is easily generalized, the discussion emphasizes SZNA assessment at petroleum hydrocarbon spill sites. The approach includes three basic levels of data collection and data reduction (Group I, Group II, and Group III). Group I measurements provide evidence that SZNA is occurring. Group II measurements include additional information necessary to estimate current SZNA rates, and group III measurements are focused on evaluating the long-term implications of SZNA for source zone characteristics and ground water quality. This paper presents the generalized site-specific SZNA assessment approach and then focuses on the interpretation of Group II data. Companion papers illustrate its application to source zones at a former oil field in California. [source]


Creep of saturated materials as a chemically enhanced rate-dependent damage process

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2007
Liang Bo Hu
Abstract Material behaviour that exhibits characteristics of creep induced by a spontaneous mineral dissolution enhanced by material damage is studied. It is believed that the characteristic rates of the chemical processes involved determine the time-rate dependence of the resulting strain. A basic model of a combined chemo-plastic softening and chemically enhanced deviatoric strain hardening for saturated geomaterials is presented. Chemical softening is postulated to occur as a consequence of the net mass removal resulting from dissolution and precipitation of specific minerals occurring at the damage-generated inter-phase interfaces. Closed and open systems are discussed. In the former case, deformation at constant stress results entirely from a local compensation mechanism between the chemical softening and strain hardening. The classical three stages of creep are interpreted in terms of mechanisms of dissolution and precipitation, as well as the variation in the reaction surface areas involved in the mass exchange. In an open system, the above local mechanism is enhanced by the removal of mass via diffusion of species affecting the mass balance. Such a system is addressed via a boundary value problem as shown in an example. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: A review

REMEDIATION, Issue 3 2010
Pamela J. Dugan
Surfactants and cosolvents are useful for enhancing the apparent solubility of dense nonaqueous-phase liquid (DNAPL) compounds during surfactant-enhanced aquifer remediation (SEAR). In situ chemical oxidation (ISCO) with permanganate, persulfate, and catalyzed hydrogen peroxide has proven to be a cost-effective and viable remediation technology for the treatment of a wide range of organic contaminants. Coupling compatible remedial technologies either concurrently or sequentially in a treatment train is an emerging concept for more effective cleanup of DNAPL-contaminated sites. Surfactants are effective for DNAPL mass removal but not useful for dissolved plume treatment. ISCO is effective for plume control and treatment but can be less effective in areas where large masses of DNAPL are present. Therefore, coupling SEAR with ISCO is a logical next step for source-zone treatment. This article provides a critical review of peer-reviewed scientific literature, nonreviewed professional journals, and conference proceedings where surfactants/cosolvents and oxidants have been utilized, either concurrently or sequentially, for DNAPL mass removal. © 2010 Wiley Periodicals, Inc. [source]