Home About us Contact | |||
Market Penetration (market + penetration)
Selected AbstractsImpact of Alternative Interventions on Changes in Generic Dispensing RatesHEALTH SERVICES RESEARCH, Issue 5 2006A. James O'Malley Objectives. To evaluate the effectiveness of four alternative interventions (member mailings, advertising campaigns, free generic drug samples to physicians, and physician financial incentives) used by a major health insurer to encourage its members to switch to generic drugs. Methods. Using claim-level data from Blue Cross Blue Shield of Michigan, we evaluated the success of four interventions implemented during 2000,2003 designed to increase the use of generic drugs among its members. Around 13 million claims involving seven important classes of drugs were used to assess the effectiveness of the interventions. For each intervention a control group was developed that most closely resembled the corresponding intervention group. Logistic regression models with interaction effects between the treatment group (intervention versus control) and the status of the intervention (active versus not active) were used to evaluate if the interventions had an effect on the generic dispensing rate (GDR). Because the mail order pharmacy was considered more aggressive at converting prescriptions to generics, separate generic purchasing models were fitted to retail and mail order claims. In secondary analyses separate models were also fitted to claims involving a new condition and claims refilled for preexisting conditions. Results. The interventions did not appear to increase the market penetration of generic drugs for either retail or mail order claims, or for claims involving new or preexisting conditions. In addition, we found that the ratio of copayments for brand name to generic drugs had a large positive effect on the GDR. Conclusions. The interventions did not appear to directly influence the GDR. Financial incentives expressed to consumers through benefit designs have a large influence on their switching to generic drugs and on the less-costly mail-order mode of purchase. [source] Simulation of the market penetration of hydrogen fuel cell vehicles in KoreaINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 4 2008Eunju Jun Abstract As fuel cell technologies are developed, hydrogen-powered vehicles are receiving more interest. The hydrogen economy, particularly hydrogen-powered vehicle penetration into the Korean transportation market, is studied in this paper. Vensim, a system dynamic code, was used to simulate the dynamics in the transportation market, assuming various types of vehicles such as gasoline, hybrid electricity, and hydrogen powered. Market share for each vehicle was predicted using the currently available data. The results showed that the hydrogen era will not be as bright as predicted by many people. The main barrier is the fuel cell cost. Thus, in order to expand the fuel cell vehicles (FCVs) market, hydrogen fuel cell cost needs to be dramatically reduced. Hydrogen-powered FCV cost, including operating and capital costs, should reach $0.16 per kilometer in order to seize 50% of the newly created transportation market. However, if strong policies or subsidies are implemented, the results predicted here will be affected. Copyright © 2007 John Wiley & Sons, Ltd. [source] Analysis of energy technology changes and associated costsINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 12 2006P. D. Lund Abstract An integrated mathematical model constituting of interlinked submodels on technology costs, progress and market penetration has been developed. The model was applied to a few new energy technologies to investigate the economic boundary conditions for a full market breakthrough and corresponding market impact on a 50 years time scale. The model shows that public subsidies amounting to slightly over 220 billion , in total worldwide would be necessary over the next 30,40 years to bring wind and photovoltaics to a cost breakthrough in the market and to reach a 20 and 5% share of all electricity at t = 50 years, respectively. These up-front learning investments would be partly amortized toward the end of the interval as the new technologies become cost competitive but could be fully paid off earlier if CO2 emission trading schemes emerge even with modest CO2 price levels. The findings are sensitive to changes in the parameter assumptions used. For example, a 2% uncertainty in the main parameters of the model could lead to a spread of tens of per cents in the future energy impact and subsidy needs, or when related to the above subsidy estimate, 155,325 billion ,. This underlines the overall uncertainty in predicting future impacts and resource needs for new energy technologies. Copyright © 2006 John Wiley & Sons, Ltd. [source] Let them fly or light them up: matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and fluorescence in situ hybridization (FISH),APMIS, Issue 11-12 2004BIRGITTA SCHWEICKERT This review focuses on clinical bacteriology and by and large does not cover the detection of fungi, viruses or parasites. It discusses two completely different but complementary approaches that may either supplement or replace classic culture-based bacteriology. The latter view may appear provocative in the light of the actual market penetration of molecular genetic testing in clinical bacteriology. Despite its elegance, high specificity and sensitivity, molecular genetic diagnostics has not yet reached the majority of clinical laboratories. The reasons for this are manifold: Many microbiologists and medical technologists are more familiar with classical microbiological methods than with molecular biology techniques. Culture-based methods still represent the work horse of everyday routine. The number of available FDA-approved molecular genetic tests is limited and external quality control is still under development. Finally, it appears difficult to incorporate genetic testing in the routine laboratory setting due to the limited number of samples received or the lack of appropriate resources. However, financial and time constraints, particularly in hospitals as a consequence of budget cuts and reduced length of stay, lead to a demand for significantly shorter turnaround times that cannot be met by culture-dependent diagnosis. As a consequence, smaller laboratories that do not have the technical and personal equipment required for molecular genetic amplification techniques may adopt alternative methods such as fluorescence in situ hybridization (FISH) that combines easy-to-perform molecular hybridization with microscopy, a technique familiar to every microbiologist. FISH is hence one of the technologies presented here. For large hospital or reference laboratories with a high sample volume requiring massive parallel high-throughput testing we discuss matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of nucleic acids, a technology that has evolved from the post-genome sequencing era, for high-throughput sequence variation analysis (1, 2). [source] Protein feeds coproduction in biomass conversion to fuels and chemicalsBIOFUELS, BIOPRODUCTS AND BIOREFINING, Issue 2 2009Bruce E. Dale Abstract Agriculture has changed greatly in the past in response to changing human needs. Now agriculture is being called on to provide raw materials for very large-scale fuel and chemical production. Agriculture will change again in response to this demand and all producers and users of agricultural feedstocks will be affected by this change. For example, livestock feeding practices have already changed in response to the availability of distillers' grains from corn ethanol production. A fuels industry based on herbaceous biomass energy crops will be many-fold larger than the existing corn ethanol industry and will produce its own set of impacts on livestock feeding. We explore here one of these impacts: the availability of large new sources of feed protein from biomass energy crops. In addition to structural carbohydrates, such as cellulose and hemicellulose, herbaceous biomass energy crops can easily be produced with approximately 10% protein, called ,leaf protein'. This leaf protein, as exemplified by alfalfa leaf protein, is superior to soybean meal (SBM) protein in its biological value. Leaf protein recovery and processing fit well into many process flow diagrams for biomass fuels. When leaf protein is properly processed to concentrate it and remove antinutritional factors, as we have learned over the years to do with soybean meal protein, protein in leaf protein concentrate (LPC) will probably be at least as valuable in livestock diets as SBM protein. If LPC is used to meet 20% of total animal protein requirements (i.e., market penetration of 20%) then the potential utilization of leaf protein concentrate could reach as much as 24 million metric tons annually. This leaf protein will replace protein from SBM and other sources. This much leaf protein will reduce by approximately 16 million hectares the amount of land required to provide protein for livestock. Likewise the amount of land required to meet fuel needs will effectively be reduced by 8 million hectares because this land will effectively do ,double duty' by producing needed animal protein as well as feedstocks for fuel production. © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd [source] |