Martin Et Al. (martin + et_al)

Distribution by Scientific Domains


Selected Abstracts


A novel method to identify gene,gene effects in nuclear families: the MDR-PDT

GENETIC EPIDEMIOLOGY, Issue 2 2006
E.R. Martin
Abstract It is now well recognized that gene,gene and gene,environment interactions are important in complex diseases, and statistical methods to detect interactions are becoming widespread. Traditional parametric approaches are limited in their ability to detect high-order interactions and handle sparse data, and standard stepwise procedures may miss interactions that occur in the absence of detectable main effects. To address these limitations, the multifactor dimensionality reduction (MDR) method [Ritchie et al., 2001: Am J Hum Genet 69:138,147] was developed. The MDR is wellsuited for examining high-order interactions and detecting interactions without main effects. The MDR was originally designed to analyze balanced case-control data. The analysis can use family data, but requires a single matched pair be selected from each family. This may be a discordant sib pair, or may be constructed from triad data when parents are available. To take advantage of additional affected and unaffected siblings requires a test statistic that measures the association of genotype with disease in general nuclear families. We have developed a novel test, the MDR-PDT, by merging the MDR method with the genotype-Pedigree Disequilibrium Test (geno-PDT)[Martin et al., 2003: Genet Epidemiol 25:203,213]. MDR-PDT allows identification of single-locus effects or joint effects of multiple loci in families of diverse structure. We present simulations to demonstrate the validity of the test and evaluate its power. To examine its applicability to real data, we applied the MDR-PDT to data from candidate genes for Alzheimer disease (AD) in a large family dataset. These results show the utility of the MDR-PDT for understanding the genetics of complex diseases. Genet. Epidemiol. 2006. © 2005 Wiley-Liss, Inc. [source]


Calcium Accretion in Girls and Boys During Puberty: A Longitudinal Analysis

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2000
Donald A. Bailey
Abstract The primary purpose of this study was to estimate the magnitude and variability of peak calcium accretion rates in the skeletons of healthy white adolescents. Total-body bone mineral content (BMC) was measured annually on six occasions by dual-energy X-ray absorptiometry (DXA; Hologic 2000, array mode), a BMC velocity curve was generated for each child by a cubic spline fit, and peak accretion rates were determined. Anthropometric measures were collected every 6 months and a 24-h dietary recall was recorded two to three times per year. Of the 113 boys and 115 girls initially enrolled in the study, 60 boys and 53 girls who had peak height velocity (PHV) and peak BMC velocity values were used in this longitudinal analysis. When the individual BMC velocity curves were aligned on the age of peak bone mineral velocity, the resulting mean peak bone mineral accrual rate was 407 g/year for boys (SD, 92 g/year; range, 226,651 g/year) and 322 g/year for girls (SD, 66 g/year; range, 194,520 g/year). Using 32.2% as the fraction of calcium in bone mineral, as determined by neutron activation analysis (Ellis et al., J Bone Miner Res 1996;11:843-848), these corresponded to peak calcium accretion rates of 359 mg/day for boys (81 mg/day; 199,574 mg/day) and 284 mg/day for girls (58 mg/day; 171,459 mg/day). These longitudinal results are 27,34% higher than our previous cross-sectional analysis in which we reported mean values of 282 mg/day for boys and 212 mg/day for girls (Martin et al., Am J Clin Nutr 1997;66:611-615). Mean age of peak calcium accretion was 14.0 years for the boys (1.0 years; 12.0-15.9 years), and 12.5 years for the girls (0.9 years; 10.5-14.6 years). Dietary calcium intake, determined as the mean of all assessments up to the age of peak accretion was 1140 mg/day (SD, 392 mg/day) for boys and 1113 mg/day (SD, 378 mg/day) for girls. We estimate that 26% of adult calcium is laid down during the 2 adolescent years of peak skeletal growth. This period of rapid growth requires high accretion rates of calcium, achieved in part by increased retention efficiency of dietary calcium. [source]


Systematic review and meta-analysis of methods of diagnostic assessment for urinary incontinence,,

NEUROUROLOGY AND URODYNAMICS, Issue 7 2006
J.L. Martin
Abstract Aims To evaluate the performance of all tests proposed for the diagnosis of urinary incontinence. Methods A systematic review and meta-analyses of the published literature of methods for diagnostic assessment of urinary incontinence. Results One hundred twenty-one papers were included in the full review [Martin et al., 2006]. The quality of reporting in the primary studies was poor which reduced the number of studies that could be included in the data analysis. The literature suggests that women with urodynamic stress incontinence (USI) can be correctly identified in primary care from clinical history alone with a sensitivity of 0.92 (95% C.I.: 0.91,0.93) and specificity of 0.56 (0.53,0.60). A clinical history for the diagnosis of detrusor overactivity (DO) was found to be 0.61 (0.57,0.65) sensitive and 0.87 (0.85,0.89) specific. Within secondary care imaging of leakage by ultrasound was found to be effective in the diagnosis of USI in women with a sensitivity of 0.89 (0.84,0.93) and specificity of 0.82 (0.73,0.89). Conclusions Clinical interpretation of the results of the review is difficult because few studies could be synthesized and conclusions made. The published evidence suggests that a large proportion of women with USI can be correctly identified in primary care from history alone. Ultrasound offers a useful diagnostic tool which could be used prior to, and possibly instead of, multi-channel urodynamics in some circumstances. If a patient is to undergo urodynamic testing, multi-channel urodynamics is likely to give the most accurate result. Further primary studies adhering to STARD guidelines are required on commonly used tests. Neurourol. Urodynam. 25:674,683, 2006. © 2006 Wiley-Liss, Inc. [source]


Preface: phys. stat. sol. (b) 245/3

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 3 2008
Christopher W. Smith
This is the third Special Issue of physica status solidi (b) focusing on materials with a negative Poisson's ratio or other ,anomalous' physical properties. This issue contains selected papers from the First International Conference on Auxetics and Anomalous Systems held at the University of Exeter, UK, on 4,6 September 2006. Around 50 participants from all over the world as well as from a wide range of scientific and engineering disciplines contributed to what was a highly successful conference. This conference follows in the footsteps of two previous workshops held at the Mathematical Research and Conference Centre in B,dlewo near Pozna,, Poland, in 2004 and 2005 [1, 2]. The papers selected for this issue publish recent results obtained for ,anomalous systems' in experiment, theory and computer simulations. In the following we summarize very briefly their contents. Alderson and Coenen compare the performance of auxetic composites to similar systems with conventional positive Poisson's ratios. They find that there are indeed differences which appear to arise from the change of the overall Poisson's ratio of the composite, some beneficial like a rise in impact tolerance at low impact rates, and others deleterious such as the reduced tolerance at higher impact rates. This is one of the first investigations of possible applications for auxetic materials. The two papers by Gaspar and Koenders both examine the effects of disorder upon anomalous properties, especially negative Poisson's ratio. In the first one Gaspar demonstrates how a mean strain estimate fails to predict negative values of Poisson's ratio because of an inability to account for local fluctuations in elastic properties. For instance it is shown that the volume fraction of auxetic regions in an globally auxetic material (measured experimentally) are smaller than a mean strain homogenisation would require. Koenders and Gaspar explore the elastic properties, and especially Poisson's ratio, of a heterogeneous 2D network of bending beams. They predict auxetic behaviour arising from localised disorder in the packing, and therefore effective locally aggregated elastic properties of the beams. In the three articles by Gatt et al. and Grima et al. models based on simple geometry are used to explain the behaviour of seemingly disparate systems, i.e. 2D honeycombs systems and zeolite SiO2 networks. Two papers concerning honeycombs demonstrate relationships between elastic properties and structure and the bounds for auxetic behaviour. The paper concerning the zeolite Natrolite uses numerical force field based energy minimisation methods to simulate the response of this particular zeolite to applied forces and then simplifies the predicted properties even further by considering structural units as rigid 2D polyhedra linked by flexible hinges. In a similar vein, though using a different approach and concerning a very different form of matter, Heyes shows how the heterogeneity in an assembly of particles in a liquid can affect the elastic properties of a liquid and notably the infinite frequency Poisson's ratio. Heyes uses the Molecular Dynamics approach to simulate a Lennard,Jones fluid under various pressures, notably comparing behaviour under positive and negative pressures. In their first paper Jasiukiewicz and co-authors derive elastic constants of 2D crystals for all four classes of 2D crystalline solids: hexagonal (isotropic), quadratic, rectangular, and oblique systems. In their second paper they demonstrate conditions required for auxetic behaviour of 2D crystals. Auxetic solids are further divided into those with some negative Poisson's ratios (auxetic), all negative Poisson's ratios (completely auxetic) and no negative Poisson's ratios (non-auxetic). Lakes and Wojciechowski consider counterintuitive properties of matter, like negative compressibility, negative Poisson's ratio, negative thermal expansion, negative specific heat, and negative pressure. They present and interpret experimental observations of negative bulk modulus in pre-strained foams. They propose also a constrained microscopic model which exhibits negative compressibility. Finally, they solve a very simple thermodynamic model with negative thermal expansion. Martin et al. take a long stride toward a real world application of auxetic materials with a wide ranging study starting with numerical modelling of a wingbox section to experimental testing in a wind tunnel. They show that an auxetic core in a wing box section can allow a passive aero-elastic response which can be tailored by careful design of the core so that camber, and thus drag, is reduced with increasing airspeed but without sacrificing structural integrity. Miller et al. consider another anomalous physical property, negative thermal expansivity, and its application in the form of particulate composites for amelioration of stresses arising from thermal mismatch. They show via experiments that particles with a negative coefficient of thermal expansion may be used as a composite reinforcer to reduce overall thermal expansion and behave according to the standard volume fraction based models. Narojczyk and Wojciechowski examine the effects of disorder upon the bulk elastic properties of 3D fcc soft sphere systems in terms of particle size. Systems, such as colloids, can be thought of in such terms. The study shows that higher order moments of probability distribution do not influence the bulk elastic properties much, but that lower moments such as the standard deviation of particle size influence the elastic properties greatly. The "hardness" of the particle interaction potential is also important in this context. In general, it is shown that the effect of increasing polydispersity is to increase the Poisson's ratio, except the [110] [10] directions. Scarpa and Malischewsky in their paper on Rayleigh waves in auxetic materials show how the Rayleigh wave speed is affected by the Poisson's ratio. The behaviour is complex and depends upon the homogeneity within the material, for instance slowing with decreasing Poisson's ratio in isotropic solids, but showing the reverse trend and increased sensitivity to Poisson's ratio in laminate composites. Scarpa et al. explore the buckling behaviour of auxetic tubes via three types of model, a simple beam mechanics and Eulerian buckling model, a 3D linear elastic FE model and a bespoke non-linear continuum model. The more sophisticated models provide increasing insight into the buckling behaviour though the simple beam model predicts reasonably well in the pre-buckling linear region. Some unexpected and interesting behaviour is predicted by the continuum model as the Poisson's ratio approaches the isotropic limit of ,1, including increasing sensitivity to Poisson's ratio and rapid mode jumping between integer wave numbers. The paper by Shilko et al. presents an analysis of a particular kind of friction joint, a double lap joint, and explores the effects of altering the elastic properties of one component, in particular it's Poisson's ratio. The manuscript introduces the evolution of smart materials from monolithic materials, and the classification of composites exhibiting negative Poisson's ratios. The paper then presents the case of a double lap joint and performs a sensitivity type study, via a 2D FE model, of the effects of changing the elastic properties and degree of anisotropy of one section of the model on various parameters defining the limits of functionality of the joint. The main finding is that an enhanced shear modulus, via a negative Poisson's ratio, can endow such a friction joint with superior performance. Manufacturing of auxetic materials on a commercial scale has proved to be the largest obstacle to their fuller exploitation. The paper by Simkins et al. explores one route for post processing of auxetic polymers fibres produced by a conventional melt extrusion route. Simkins et al. showed that a post process thermal annealing treatment, with carefully optimised parameters, was able to even out otherwise inhomogenous auxetic properties, and moreover improve other elastic and fracture properties often sacrificed for auxetic behaviour. We gratefully acknowledge the support given by the sponsors of the conference, namely the EPSRC of the UK and Auxetic Technologies Ltd. (UK). We also thank the Scientific Committee, the Organising Committee, and all the participants of the conference. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]