Home About us Contact | |||
MAPK Signalling Pathways (mapk + signalling_pathway)
Selected AbstractsSimulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topographyCYTOSKELETON, Issue 2 2008W. A. Loesberg Abstract This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 ,m, width: 1 ,m), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more dominant to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell alignment. Expression of collagen type I, and ,1-, ,1-, ,3-integrin were investigated by QPCR. Finally, immunoblotting was applied to visualise MAPK signalling pathways. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata, cells had spread out in a random fashion. The alignment of cells cultured on grooved surfaces under simulated microgravity, after 48 h of culturing appeared similar to those cultured at 1g, although cell shape was different. Analysis of variance proved that all main parameters: topography, gravity force, and time were significant. In addition, gene levels were reduced by simulated microgravity particularly those of ,3-integrin and collagen, however alpha-1 and beta-1 integrin levels were up-regulated. ERK1/2 was reduced in RPM, however, JNK/SAPK and p38 remained active. The members of the small GTPases family were stimulated under microgravity, particularly RhoA and Cdc42. The results are in agreement that application of microgravity to fibroblasts promotes a change in their morphological appearance and their expression of cell-substratum proteins through the MAPK intracellular signalling pathways. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source] Neural cell adhesion molecule stimulates survival of premyelinating oligodendrocytes via the fibroblast growth factor receptorJOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2009Anne L. Palser Abstract Axonal signals are critical in promoting the survival and maturation of oligodendrocytes during myelination, with contact-dependent signals thought to play a key role. However, the exact nature of these signals remains unclear. Neural cell adhesion molecule (NCAM) is expressed by both axons and oligodendrocytes and is ideally localized to transduce signals from the axon. This study sought to investigate the influence of NCAM on premyelinating oligodendrocytes in vitro. Both a soluble molecule comprising the extracellular domain of NCAM and a peptide derived from the fibroblast growth factor receptor (FGFR) binding motif within the first fibronectin domain stimulated a dose-dependent increase in survival of premyelinating oligodendrocytes in vitro. The survival effect was blocked by a mitogen-activated protein kinase (MAPK) inhibitor and an FGFR inhibitor, suggesting that activation of MAPK signalling pathways following interaction with the FGFR is involved in the survival effect of NCAM. Furthermore, NCAM presented in a cellular monolayer induced an increase in radial process outgrowth of oligodendrocyte progenitor cells. These data suggest that NCAM may play a role in axon,oligodendrocyte signalling during myelination, leading to an increase in oligodendrocyte survival and process outgrowth following axonal contact. © 2009 Wiley-Liss, Inc. [source] Transforming growth factor-, induces epithelial to mesenchymal transition by down-regulation of claudin-1 expression and the fence function in adult rat hepatocytesLIVER INTERNATIONAL, Issue 4 2008Takashi Kojima Abstract Background/Aims: Transforming growth factor-, (TGF-,) initiates and maintains epithelial,mesenchymal transition (EMT), which causes disassembly of tight junctions and loss of epithelial cell polarity. In mature hepatocytes during EMT induced by TGF-,, changes in the expression of tight junction proteins and the fence function indicated that epithelial cell polarity remains unclear. Methods: In the present study, using primary cultures of adult rat hepatocytes at day 10 after plating, in which epithelial cell polarity is well maintained by tight junctions, we examined the effects of 0.01,20 ng/ml TGF-, on the expression of the integral tight junction proteins, claudin-1, -2 and occludin, as well as the fence function. Results: In adult rat hepatocytes, TGF-, induced EMT, which was indicated as upregulation of Smad-interacting protein-1 (SIP1) and Snail and down-regulation of E-cadherin. Down-regulation of claudin-1 and upregulation of occludin were observed beginning from a low dose of TGF-,, whereas upregulation of claudin-2 was observed at a high dose of TGF-,. Furthermore, treatment with TGF-, caused disruption of the fence function, which was closely associated with the expression of claudin-1 via p38 mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase and protein kinase C but not MAPK signalling pathways. Conclusion: These results suggest that in mature hepatocytes in vitro, TGF-, induces EMT by down-regulation of claudin-1 and the fence function via distinct signalling pathways. [source] Heparin-binding epidermal growth factor-like growth factor functionally antagonizes interstitial cystitis antiproliferative factor via mitogen-activated protein kinase pathway activationBJU INTERNATIONAL, Issue 4 2009Jayoung Kim OBJECTIVE To delineate the mechanism underlying the potential functional relationship between interstitial cystitis antiproliferative factor (APF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF), as APF has previously been shown to decrease the proliferation rate of normal bladder epithelial cells and the amount of HB-EGF produced by these cells. MATERIALS AND METHODS APF-responsive T24 transitional carcinoma bladder cells were treated with high-pressure liquid chromatography-purified native APF with or without HB-EGF to determine the involvement of signalling pathways and proliferation by Western blot analysis, p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (Erk)/MAPK assays, and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS Cyclic stretch induced the secretion of HB-EGF from T24 cells overexpressing the HB-EGF precursor, resulting in enhanced proliferation. T24 cells treated with APF had increased p38MAPK activity and suppressed cell growth, events that were both reversed by treatment with a p38MAPK-selective inhibitor. Activation of Erk/MAPK by HB-EGF was inhibited by APF, and APF did not stimulate p38MAPK in the presence of soluble HB-EGF or when cells overexpressed constitutively secreted HB-EGF. Lastly, APF inhibitory effects on cell growth were attenuated by HB-EGF. CONCLUSIONS These results indicate that HB-EGF and APF are functionally antagonistic and signal through parallel MAPK signalling pathways in bladder cells. [source] |