Many Potential Applications (many + potential_application)

Distribution by Scientific Domains


Selected Abstracts


Supercritical fluids in medical radioisotope processing and chemistry, Part II: Applications , real and demonstrated

JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 10 2003
Richard A. Ferrieri
Abstract In Part I of this review series, an overview was presented on what the basic properties of supercritical fluids are and how they can, and are being used in many of today's industries as solvents for extraction, chromatography and reaction. A good part of this overview detailed the kinds of equipment needed, and techniques on how to use them for optimal performance. Part II of this series will delve into specific applications of supercritical fluid technology as it relates to aspects of medical isotope processing. The reader will note that very few applications of this technology to Nuclear Medicine have been published. Many potential applications cited within the context of this review derive from preliminary studies carried out in the author's laboratory. These examples are presented to spark interest in future developments of this nature. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Transgenic fish: an evaluation of benefits and risks

FISH AND FISHERIES, Issue 2 2000
N. Maclean
Transgenic fish have many potential applications in aquaculture, but also raise concerns regarding the possible deleterious effects of escaped or released transgenic fish on natural ecosystems. In this review the potential applications of transgenic fish are considered, the probable benefits reviewed, the possible risks to the environment identified and the measures which might be taken to minimize these risks are evaluated. Growth trials of transgenic fish have already been carried out in outdoor facilities and some of these are discussed in the light of possible risks and benefits. Regarding the hazards associated with release or escape, whilst there is some evidence to suggest that transgenic fish may be less fit compared to their wild counterparts, there is insufficient evidence to say that this will be true in all cases. Using mathematical models, we have attempted to predict the magnitude of the genetic effects in a range of different scenarios. A number of possible containment techniques are considered, amongst which containment by sterility is probably the most promising. This can be engineered either by triploidy or by transgenic methods. The conclusions include a tabulated balance sheet of likely benefits and risks, with appropriate weighting. [source]


Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications

ADVANCED MATERIALS, Issue 4 2010
Thomas Boudou
Abstract The design of advanced functional materials with nanometer- and micrometer-scale control over their properties is of considerable interest for both fundamental and applied studies because of the many potential applications for these materials in the fields of biomedical materials, tissue engineering, and regenerative medicine. The layer-by-layer deposition technique introduced in the early 1990s by Decher, Moehwald, and Lvov is a versatile technique, which has attracted an increasing number of researchers in recent years due to its wide range of advantages for biomedical applications: ease of preparation under "mild" conditions compatible with physiological media, capability of incorporating bioactive molecules, extra-cellular matrix components and biopolymers in the films, tunable mechanical properties, and spatio-temporal control over film organization. The last few years have seen a significant increase in reports exploring the possibilities offered by diffusing molecules into films to control their internal structures or design "reservoirs," as well as control their mechanical properties. Such properties, associated with the chemical properties of films, are particularly important for designing biomedical devices that contain bioactive molecules. In this review, we highlight recent work on designing and controlling film properties at the nanometer and micrometer scales with a view to developing new biomaterial coatings, tissue engineered constructs that could mimic in vivo cellular microenvironments, and stem cell "niches." [source]


Influence of technological parameters on the epoxidation of 1-butene-3-ol over titanium silicalite TS-2 catalyst

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2009
Agnieszka Wróblewska
Abstract BACKGROUND: The influence of technological parameters on the epoxidation of 1-butene-3-ol (1B3O) over titanium silicalite TS-2 catalyst has been investigated. Epoxidations were carried out using 30%(w/w) hydrogen peroxide at atmospheric pressure. The major product from the epoxidation of B3O was 1,2-epoxybutane-3-ol, with many potential applications. RESULTS: The influence of temperature (20,60 °C), 1B3O/H2O2 molar ratio (1:1,5:1), methanol concentration (5,90%(w/w)), TS-2 catalyst concentration (0.1,6.0%(w/w)) and reaction time (0.5,5.0 h) have been studied. CONCLUSION: The epoxidation process is most effective if conducted at a temperature of 20 °C, 1B3O/H2O2 molar ratio 1:1, methanol concentration (used as the solvent) 80%(w/w), catalyst concentration 5%(w/w) and reaction time 5 h. Copyright © 2009 Society of Chemical Industry [source]


Non-covalent molecular imprinting with emphasis on its application in separation and drug development,

JOURNAL OF MOLECULAR RECOGNITION, Issue 4 2006
Huiqi Zhang
Abstract The molecular imprinting technique can be defined as the formation of specific nano-sized cavities by means of template-directed synthesis. The resulting molecularly imprinted polymers (MIPs), which often have an affinity and a selectivity approaching those of antibody-antigen systems, have thus been coined "artificial antibodies." MIPs are characterized by their high specificity, ease of preparation, and their thermal and chemical stability. They have been widely studied in connection with many potential applications, including their use for separation and isolation purposes, as antibody mimics (biomimetic assays and sensors), as enzyme mimics, in organic synthesis, and in drug delivery. The non-covalent imprinting approach, developed mainly in Lund, has proven to be more versatile than the alternative covalent approach because of its preparation being less complicated and of the broad selection of functional monomers and possible target molecules that are available. The paper presents a review of studies of this versatile technique in the areas of separation and drug development, with emphasis being placed on work carried out in our laboratory. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Synthesis of raspberry-like silica/polystyrene/silica multilayer hybrid particles via miniemulsion polymerization

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2007
Xiaoguang Qiao
Abstract Organic,inorganic hybrid particles have many potential applications, but almost all research has been focused on hybrid particles with one kind of inorganic nanoparticle. This article presents a novel and facile preparation approach for raspberry-like silica/polystyrene/silica multilayer hybrid particles via miniemulsion polymerization. In this method, larger, surface-modified silica particles are first dispersed into monomer droplets to form a miniemulsion, and then raspberry-like silica/polystyrene/silica multilayer hybrid particles are directly obtained when miniemulsion polymerization is performed in the presence of smaller, unmodified silica particles with 4-vinylpyridine as an auxiliary monomer. Influential parameters such as the amount of 4-vinylpyridine, the surfactant concentration, and the pH value of the system have been investigated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1028,1037, 2007 [source]


Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2005
Huadong Tang
Abstract Polymeric forms of ionic liquids have many potential applications because of their high thermal stability and ionic nature. Two ionic liquid monomers, 1-(4-vinylbenzyl)-3-butyl imidazolium tetrafluoroborate (VBIT) and 1-(4-vinylbenzyl)-3- butyl imidazolium hexafluorophosphate (VBIH), were synthesized through the quaternization of N -butylimidazole with 4-vinylbenzylchloride and a subsequent anion- exchange reaction with sodium tetrafluoroborate or potassium hexafluorophosphate. Copper-mediated atom transfer radical polymerization was used to polymerize VBIT and VBIH. The effects of various initiator/catalyst systems, monomer concentrations, solvent polarities, and reaction temperatures on the polymerization were examined. The polymerization was well controlled and exhibited living characteristics when CuBr/1,1,4,7,10,10-hexamethyltriethylenetetramine or CuBr/2,2,-bipyridine was used as the catalyst and ethyl 2-bromoisobutyrate was used as the initiator. Characterizations by thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction showed that the resulting VBIT polymer, poly[1-(4-vinylbenzyl)-3-butyl imidazolium tetrafluoroborate] (PVBIT), was amorphous and had excellent thermal stability, with a glass-transition temperature of 84 °C. The polymerized ionic liquids could absorb CO2 as ionic liquids: PVBIT absorbed 0.30% (w/w) CO2 at room temperature and 0.78 atm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1432,1443, 2005 [source]


Emulsifying properties of gum kondagogu (Cochlospermum gossypium), a natural biopolymer

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 8 2009
Ganga Modi Naidu Vegi
Abstract BACKGROUND: Natural polymers are widely used as emulsifying agents in the food and pharmaceutical industries because of their low cost, biocompatibility and non-toxic nature. In the present study, emulsifying properties of the novel natural biopolymer gum kondagogu (GKG) were investigated. GKG solutions of different concentrations (0.1,0.6% w/v) were prepared in water and emulsified with liquid paraffin oil (40% v/v) in a high-speed homogeniser. Flow properties of the emulsions were measured using a rheometer. Emulsion stability and droplet size distribution were determined by visual observation, photomicrography and laser-scattering particle size distribution analysis. RESULTS: The emulsions prepared with GKG showed pseudoplastic behaviour. The size of oil droplets and the viscosity of emulsions at concentrations of 0.4,0.6% w/v showed little change over time (up to 30 days), indicating that the emulsions were stable. Measurements of the zeta potential of emulsions adjusted to different pH, with and without added electrolyte, showed that the stabilisation of emulsions with GKG was due to mutual repulsion between electrical double layers of particles and adsorption of macromolecules on oil droplets. CONCLUSION: The results of this experimental investigation show that GKG is a good emulsifying agent even at low concentrations, with many potential applications in the food and pharmaceutical industries. Copyright © 2009 Society of Chemical Industry [source]


Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

LASER PHYSICS LETTERS, Issue 8 2009
Q. Wang
Abstract This paper presents an ultra wideband tunable silicabased erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications. (© 2009 by Astro Ltd., Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA) [source]


Template-directed synthesis of hybrid nanowires and nanorods

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 10 2010
Jiayin Yuan
Abstract Recently, one-dimensional (1D) nanostructures, such as wires, rods, tubes, etc., have attracted considerable attention due to their unique shape- and size-dependant properties and many potential applications. Template-directed synthesis is a powerful and widely used method to prepare 1D objects. As robust unimolecular template, cylindrical polymer brushes have been exploited for the fabrication of various hybrid nanowires and nanorods, for instance, ,-Fe2O3, CdS, CdSe, TiO2, silica, Au, Te, etc. As a key advantage of this polymeric templating, the obtained 1D hybrid nanostructures are colloidally stable in solution, facilitating their further solution processing. Cryo-TEM image of organo-silica hybrid nanowires in aqueous solution (the inset shows a cartoon of the structure). [source]


Preparation of polyaniline/vermiculite clay nanocomposites by in situ chemical oxidative grafting polymerization

POLYMER INTERNATIONAL, Issue 5 2009
Zhaobin Tang
Abstract BACKGROUND: Recently, conducting polymers have attracted much attention, since they have interesting physical properties and many potential applications, such as in conductive coating charge storage. Hence the synthesis of conducting polymer nanocomposites is also an area of increasing research activity. RESULTS: Vermiculites (VMTs) were successfully delaminated using an acid treatment. Polyaniline (PANI)/VMT nanocomposites were prepared by in situ chemical oxidative grafting polymerization. CONCLUSION: The chemical grafting of PANI/VMTs was confirmed by Fourier transform infrared and UV-visible spectroscopy. The percentage of grafted PANI was 142.7 wt% as a mass ratio of the grafting PANI and charged nano-VMTs, investigated using thermogravimetric analysis. In addition, characteristic agglomerate morphology of PANI was observed in the composites using scanning electron microscopy. Thermal analyses indicated that the introduction of VMT nanosheets had a beneficial effect on the thermal stability of PANI. The electrical conductivity of the nanocomposites was 3.9 × 10,3 S cm,1, a value typical for semiconductors. Copyright © 2009 Society of Chemical Industry [source]


Analysis and design of networked control systems using the additive noise model methodology,

ASIAN JOURNAL OF CONTROL, Issue 4 2010
Graham C. Goodwin
Abstract Networked Control has emerged in recent years as a new and exciting area in systems science. The topic has many potential applications in diverse areas ranging from control of microrobots to biological and economic systems. The supporting theory is very rich and combines aspects of control, signal processing, telecommunications, and information theory. In this paper, we give a partial overview of recent developments in Networked Control with an emphasis on the additive noise model methodology. We also point to several open problems in this emerging area. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source]


Carbon Nanotube and Gold-Based Materials: A Symbiosis

CHEMISTRY - A EUROPEAN JOURNAL, Issue 6 2010
Rajpal Singh Dr.
Abstract Carbon nanotubes constitute a novel class of nanomaterials with potential applications in many areas. The attachment of metal nanoparticles to carbon nanotubes is new way to obtain novel hybrid materials with interesting properties for various applications such as catalysts and gas sensors as well as electronic and magnetic devices. Their unique properties such as excellent electronic properties, a good chemical stability, and a large surface area make carbon nanotubes very useful as a support for gold nanoparticles in many potential applications, ranging from advanced catalytic systems through very sensitive electrochemical sensors and biosensors to highly efficient fuel cells. Here we give an overview on the recent progress in this area by exploring the various synthesis approaches and types of assemblies, in which nanotubes can be decorated with gold nanoparticles and explore the diverse applications of the resulting composites. [source]