Home About us Contact | |||
Many Materials (many + material)
Selected AbstractsPractical causal hysteretic dampingEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 5 2007Naohiro Nakamura Abstract A number of experiments indicate that the internal damping corresponding to the energy dissipation of many materials is essentially frequency independent. Accordingly, an analysis model that can express such characteristics (called a hysteretic damping model) in the time domain is needed. Although a great number of investigations into this subject have been carried out, there are a few practical methods. In this paper, a simple hysteretic damping model which satisfies the causality condition is presented using an extension of the complex stiffness transfer method that the author has proposed. Compared with the energy proportional damping model and the Biot model, the applicability and the efficiency of this model to time history response analyses were confirmed well by example problems. Copyright © 2006 John Wiley & Sons, Ltd. [source] Antioxidant Activity of Degradable Polymer Poly(trolox ester) to Suppress Oxidative Stress Injury in the CellsADVANCED FUNCTIONAL MATERIALS, Issue 1 2010Paritosh P. Wattamwar Abstract Oxidative stress is a pathological condition that has been implicated as a central player in a variety of diseases, including vascular and neurodegenerative diseases. More recently, oxidative stress has also been shown to be involved in the biological incompatibility of many materials, especially at the nanoscale. As such, there is a critical need for new biomaterials that can inhibit this response, improving the compatibility of medical devices. In this work, trolox, a synthetic antioxidant and water-soluble analogue of Vitamin E, is polymerized to form an oxidation active polymer as a new class of biomaterial. Synthesized poly(trolox ester) polymers were formulated into nanoparticles using a single emulsion technique, and their size was controlled by changing the polymer concentration in the organic solvent. Nanoparticle cytotoxicity, protective effects against cellular oxidative stress, and degradation kinetics were all evaluated. Poly(trolox ester) nanoparticles were found to have little to no cytotoxicity and were capable of suppressing cellular oxidative stress induced by cobalt nanoparticles. In vitro degradation studies of poly(trolox ester) nanoparticles indicate that the antioxidant activity of nanoparticles was derived from its enzymatic degradation to release active antioxidants. [source] Non-local damage model based on displacement averagingINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2005M. Jirásek Abstract Continuum damage models describe the changes of material stiffness and strength, caused by the evolution of defects, in the framework of continuum mechanics. In many materials, a fast evolution of defects leads to stress,strain laws with softening, which creates serious mathematical and numerical problems. To regularize the model behaviour, various generalized continuum theories have been proposed. Integral-type non-local damage models are often based on weighted spatial averaging of a strain-like quantity. This paper explores an alternative formulation with averaging of the displacement field. Damage is assumed to be driven by the symmetric gradient of the non-local displacements. It is demonstrated that an exact equivalence between strain and displacement averaging can be achieved only in an unbounded medium. Around physical boundaries of the analysed body, both formulations differ and the non-local displacement model generates spurious damage in the boundary layers. The paper shows that this undesirable effect can be suppressed by an appropriate adjustment of the non-local weight function. Alternatively, an implicit gradient formulation could be used. Issues of algorithmic implementation, computational efficiency and smoothness of the resolved stress fields are discussed. Copyright © 2005 John Wiley & Sons, Ltd. [source] Carbothermal synthesis of vanadium nitride: Kinetics and mechanismINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 6 2006A. Ortega Constant rate thermal analysis (CRTA) has been used for the first time to study the kinetics of the carbothermal reduction of V2O5 in nitrogen to obtain vanadium nitride. It is noteworthy to point out that CRTA method allows both a good control of pressure in the sample surroundings and the use of reaction rates low enough to keep temperatures gradients at a negligible level to avoid any heat or mass transfer phenomena. This method allows one to control the texture and the structure of many materials through kinetic control of the thermal treatment of the precursors. The precise control of the external parameters of the reaction shows that CRTA is an attractive method for kinetic studies and leads to more reliable kinetic data. It has been shown that the carbothermal synthesis of vanadium nitride is best described by a three-dimensional diffusion kinetic model (the Jander equation) with an activation energy which falls in the range of 520,540 kJ/mol. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 369,375, 2006 [source] Solid-solid reactions in series: A modeling and experimental studyAICHE JOURNAL, Issue 9 2009A. K. Suresh Abstract Reactions among particulate solid phases are important and abundant in many materials, chemical, and metallurgical process industries. Many of these are reaction networks, and not single-step reactions as normally assumed. There is no theoretical framework available for the analysis of such systems, and single-reaction models derived from the gas,solid literature continue to be used. Formation of cement clinker in the rotary cement kiln is a prime example of the genre, in which mechanistic aspects play an important role in determining energy efficiency and the composition and nature of the phases that form. In the present study, we formulate a model within the ambit of the "shrinking core" class of models, for reactions in series among solid phases. The model shows the presence of one or two moving fronts in the reacting particle, depending on the relative rates of the processes involved. A single Thiele-type parameter controls the model behavior, at once describing the relative rates of the intermediate formation and consumption processes, and the diffusion-reaction competition for the product formation step. The model has been shown to reduce to the well known single reaction models at the limits of low and high values of the Thiele parameter. Experimental data have been obtained on the calcia-alumina system, an important one in cement manufacture, in the temperature range 1150,1250°C. The model has been fitted to these data and the kinetic parameters determined. The comparison bears out the salient features of the theory, and shows that a degree of diffusion limitation exists for the intermediate conversion step under these conditions. The diffusivity values estimated are in the range of 10,19 to 10,18 m2/s and agree with values found in the literature for similar systems. The rate constant for the intermediate conversion step is of the order of 10,6 s,1. This being among the first such determinations, this value awaits confirmation from other studies. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] |