Many Industrial Applications (many + industrial_application)

Distribution by Scientific Domains


Selected Abstracts


Effect of phosphonate additive on crystallization of gypsum in phosphoric and sulfuric acid medium

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 12 2002
H. El-Shall
Abstract Understanding the mechanisms of growth and inhibition during crystallization of calcium sulfate is of primary importance for many industrial applications. For instance, inhibition of the crystallization process may be required to prevent scale formation in pipes, boilers, heat exchangers, reactors, reverse osmosis membrane surfaces, cooling water systems, secondary oil recovery utilizing water flooding techniques and desalination evaporators, etc. On the other hand, control growth and morphology of gypsum crystals is desired in achieving higher filtration rate and higher productivity of phosphoric acid from phosphate rocks. In this regard, this basic study is carried out to understand effect of Aminotris (methylenephosphonic acid (ATMP) on calcium sulfate dihydrate (gypsum) crystallization. The time elapsed between the achievement of supersaturation and the appearance of a solid phase (termed as induction time) is measured under different supersaturation ratios ranging from 1.018 to 1.979. The data are used to calculate the surface energy, critical nucleus size, and crystal growth rates of gypsum under different conditions. The results show that, the induction time decreases exponentially with increasing the supersaturation ratio. In addition, the surface energy decreases with ATMP compared to the baseline (without ATMP). Interestingly, with addition of the ATMP, the crystals mean and median diameters are found to decrease. The inhibition efficiency ranges from 16% to 59% depending on supersaturation ratio. [source]


An invariant-based approach for high-cycle fatigue calculation

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 4 2009
A. CRISTOFORI
ABSTRACT Fatigue failures of in-service components are frequently due to multiaxial loadings; therefore, damage quantification in such conditions is important to many industrial applications. In this work a multiaxial criterion suitable for high-cycle fatigue assessment is formalized. It makes use of hydrostatic stress component and deviatoric stress component to estimate fatigue damage. A new formulation for the equivalent amplitude of the deviatoric component is formalized and compared with definitions proposed by Deperrois and Li and De Freitas. Damage evaluation procedure is discussed for deterministic loads and explicit analytical formulation is presented for sinusoidal loadings. Fatigue criterion is applied to experimental data taken from literature, related to several materials subjected to either in-phase or out-of-phase loads. It is shown that the new approach gives good predictions for both smooth and notched specimens. A similar comparison between experimental and theoretical results is also presented for other common criteria. It appears that the quality of the fatigue assessments obtained with the present criterion is better or, at most, similar to that of the other criteria analysed. [source]


Surface-Modified Mesoporous SiO2 Containers for Corrosion Protection

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
Ekaterina V. Skorb
Abstract The development of active corrosion protection systems for metallic substrates is an issue of prime importance for many industrial applications. The present work shows a new contribution to the design of a new protective system based on surface modified mesoporous silica containers. Incorporation of silica-based containers into special sol,gel matrix allows for a self-healing effect to be achieved during the corrosion process. The self-healing ability occurs due to release of entrapped corrosion inhibitors in response to pH changes caused by the corrosion process. A silica,zirconia-based hybrid film is used in this work as a coating matrix deposited on AA2024 aluminum alloy. Mesoporous silica nano-particles are covered layer-by-layer with polyelectrolyte layers and loaded with inhibitor [2-(benzothiazol-2-ylsulfanyl)-succinic acid]. The hybrid film with nanocontainers reveals enhanced long-term corrosion protection in comparison with the individual sol,gel films. The scanning vibrating electrode technique also shows an effective healing ability of containers to cure the corrosion defects. This effect is due to the release of the corrosion inhibitor triggered by the corrosion processes started in the cavities. The approach described herein can be used in many applications where active corrosion protection of materials is required. [source]


COVALENT IMMOBILIZATION OF INVERTASE ON CHEMICALLY ACTIVATED POLY (STYRENE-2-HYDROXYETHYL METHACRYLATE) MICROBEADS

JOURNAL OF FOOD BIOCHEMISTRY, Issue 3 2008
HAYDAR ALTINOK
ABSTRACT A carrier for invertase enzyme was synthesized from styrene (S) and 2- hydroxyethyl methacrylate (HEMA) in the form of microbeads. These poly (styrene-2-hydroxyethyl methacrylate), P(S-HEMA) microbeads were activated by epichlorohydrin (ECH) treatment for covalent immobilization. The free and immobilized invertase were assayed in the hydrolysis of sucrose to glucose, and the obtained results were compared. The optimum pH was 4.5 for free and 5.5 for immobilized invertase. The optimum temperature of invertase shifted from 45C to 55C upon immobilization. For free and immobilized enzymes, kinetic parameters were calculated as 4.1 × 10,3 mol L,1and 9.2 × 10,3 mol L,1for Km, and 6.6 × 10,2 mol L,1 min,1and 4.1 × 10,1 mol L,1 min,1for Vmax, respectively. After 1 month of storage at 4C, free enzyme retained 36% of its initial activity, while for the ECH-activated P(S-HEMA) immobilized enzyme, P(S-HEMA)-E, this value was observed as 67%. In repeated batch use, i.e., 20 times in 3 days, 78% retention of the initial activity was observed for P(S-HEMA)-E system. PRACTICAL APPLICATIONS Immobilization of enzymes are very important for many industrial applications, e.g., food, medicine, pharmacology, etc. Invertase converts sucrose to glucose and fructose, which have wide applications in food industry especially as sweeteners. Glucose,fructose mixture has much lower crystallinity compared to sucrose and therefore used in the production of noncrystallizing jams and creams. They are also used as liquid sweeteners. Immobilization enables repeated use, provides significant reduction in the operation costs, facilitates easy separation and speeds up recovery of enzyme and extends the stability of enzyme by protecting the active material from deactivation. Industrial application of immobilized invertase may decrease the production cost of glucose,fructose mixture because it could be used repeatedly for long periods. Although invertase is not a very expensive enzyme, the technique can also be applied to expensive ones for biotechnological productions. [source]


Commercial Exploration of High-Temperature Superconductivity

LASER TECHNIK JOURNAL, Issue 4 2010
Excimer Lasers Enable Novel Coated Superconductor Cylinders
Superconductivity, which is the condition in which the electrical resistance of a material drops to zero, was discovered nearly 100 years ago. Since that time, large superconducting magnets such as those used in magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR) and big physics experiments have been developed and can now be regarded as being commercial products extending our capabilities in medicine and science. Yet many industrial applications of high temperature superconductivity (HTS) are on the horizon waiting to enter the marketplace. Currently, numerous manufacturers are working on improving and upscaling HTS materials, which operate at liquid nitrogen temperatures, and the most promising configuration for these materials is in the form of long tapes also known as coated conductors. These coated conductors are wound into coils in order to produce electrical components such as motors, magnets, transformers etc. Depending on the component to be made, there is an alternative to fabricating long unit lengths of superconducting tape, and in forming stable robust windings utilizing them. Now, a new technique has been developed which is using pulsed laser deposition (PLD) to deposit a series of layers of superconducting material directly on to the surface of a cylinder and patterning them into coils. This configuration provides a very direct route for the production of components that conventionally involve winding processes. This article explores how coated conductor cylinders can be produced utilizing this technique and explains why industriallyproven excimers represent the optimum choice of laser source for this emergingtechnology. [source]


Preparation and characterization of PBT nanocomposites compounded with different montmorillonites

POLYMER ENGINEERING & SCIENCE, Issue 6 2004
Domenico Acierno
Because of their superior mechanical and thermal properties, light weight, and favorable cost/performance ratio, nanocomposite materials appear to be suitable replacements for metals and alloys in many industrial applications in fields such as automotive, structural plastics, electronics, packaging, and so on (1). The technological relevance of this large-scale market for polymers is evidenced by the numerous patents issued over the last few years, even though only few applications have entered the market. Polymer-clay nanocomposite systems were successfully prepared by melt compounding using several thermoplastic matrices (polyamides, polyolefins, etc.), but few data are reported in the scientific literature on polyester-based nanocomposites (2). Because of the high commercial relevance of polyesters, we have investigated the effect of organoclay inclusion on the structure and properties of these hybrid systems. In particular, we have studied the relationships between processing conditions, hybrid composition (organoclay type and content), nanoscale morphology and properties of poly(butylene terephthalate) (PBT) nanocomposites based upon several commercial organo-modified montmorillonites at different weight percentages. The melt compounding was performed using a twin-screw extruder, at extrusion rates of 90 or 150 rpm. Polym. Eng. Sci. 44:1012,1018, 2004. © 2004 Society of Plastics Engineers. [source]


Crystallization and preliminary X-ray crystallographic analysis of ,-galactosidase from Kluyveromyces lactis

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2010
Ángel Pereira-Rodríguez
,-Galactosidase from Kluyveromyces lactis catalyses the hydrolysis of the ,-galactosidic linkage in lactose. Owing to its many industrial applications, the biotechnological potential of this enzyme is substantial. This protein has been expressed in yeast and purified for crystallization trials. However, optimization of the best crystallization conditions yielded crystals with poor diffraction quality that precluded further structural studies. Finally, the crystal quality was improved using the streak-seeding technique and a complete diffraction data set was collected at 2.8,Ĺ resolution. [source]


Experimental and Numerical Studies of Fe2O3 Particle Formation Processes in a Flat Flame Burner

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 6 2007
M. Beck
Abstract Particle formation processes are of interest for many industrial applications. This work focuses on investigating Fe2O3 particle formation. The particles form during thermal decomposition of an iron chloride solution in so-called spray roasting reactors. To analyze the reaction process, a laboratory reactor was designed which reproduces the conditions required for a systematic study of the particle formation process. Furthermore, a simplified particle conversion model was developed to simulate the realistic geometries and particle numbers on an industrial scale by CFD codes. [source]