Manure

Distribution by Scientific Domains
Distribution within Earth and Environmental Science

Kinds of Manure

  • animal manure
  • cattle manure
  • chicken manure
  • dairy manure
  • farmyard manure
  • green manure
  • liquid manure
  • organic manure
  • pig manure
  • poultry manure
  • swine manure

  • Terms modified by Manure

  • manure application
  • manure treatment

  • Selected Abstracts


    Productivity and Sustainability of Cotton (Gossypium hirsutum L.),Wheat (Triticum aestivum L.) Cropping System as Influenced by Prilled Urea, Farmyard Manure and Azotobacter

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2004
    A. Das
    Abstract Field experiments were conducted at Indian Agricultural Research Institute, New Delhi, during 2001,2002 and 2002,2003, to study the effect of inorganic, organic and Azotobacter combined sources of N on cotton (Gossypium hirsutum L.) and their residual effect on succeeding wheat (Triticum aestivum L.) crop. The results indicated considerable increase in yield attributes and mean seed cotton yield (2.33 Mg ha,1) with the combined application of 30 kg N and farmyard manure (FYM) at 12 Mg ha,1 along with Azotobacter (M4). The treatment in cotton that included FYM, especially when fertilizer N was also applied could either improve or maintain the soil fertility status in terms of available N, P and K. Distinct increase in yield attributes and grain yield of wheat was observed with the residual effect of integrated application of 30 kg N ha,1 + FYM at 12 Mg ha,1 + Azotobacter. Direct application of 120 kg N ha,1 resulted 67.4 and 17.7 % increase in mean grain yield of wheat over no N and 60 kg N ha,1, respectively. Integrated application of organic and inorganic fertilizer is therefore, recommended for higher productivity and sustainability of the cotton,wheat system. [source]


    Impact of Phosphorus from Dairy Manure and Commercial Fertilizer on Perennial Grass Forage Production

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 6 2003
    E. A. Mikhailova
    Abstract Increased recovery and recycling of manure phosphorus (P) by crops on dairy farms is needed to minimize environmental problems. The main objective of this study was to compare P utilization by orchardgrass (Dactylis glomerata L.) and tall fescue (Festuca arundinaceae Schreb.) from dairy manure or inorganic fertilizer. The study was conducted from 1994 to 2000 at the Cornell University Baker Farm, Willsboro, NY, on a somewhat poorly drained Kingsbury clay (very,fine, illitic, mesic Aeric Epiaqualfs). The design was a split-plot in a randomized complete block with two manure rates (16 800 and 33 600 kg ha,1) and one nitrogen (N) fertilizer rate (84 kg N ha,1 at spring greenup and 56 kg N ha,1 prior to each regrowth harvest) as the main plots and grass species as subplots replicated six times. Fertilizer P [Ca(H2PO4)2] was applied to the fertilizer treatment in 1995 and 1996 at 11 kg P ha,1 year,1. Orchardgrass P removal averaged 21 % higher than tall fescue P removal for the spring harvest, but orchardgrass averaged 24 % lower P removal than tall fescue removal for all regrowth harvests from 1995,99. Phosphorus herbage concentration in the fertilizer treatment was in the range of 1.9,2.7 g P kg,1 compared with 2.2,5.3 g P kg,1 in the manure treatments. Seasonal P removal ranged from as low as 9.2 kg P ha,1 to as high as 48.5 kg P ha,1. Morgan extractable soil P in the top 0,0.20 m remained high through 1999, with 29.1 kg P ha,1 at the highest manure rate in tall fescue compared with 8.4 kg P ha,1 measured in 1993 prior to the experiment. In 2000, soil P at the highest manure rate in tall fescue dropped to 10.1 kg P ha,1, following cessation of manure application in 1998. Intensively managed harvested orchardgrass and tall fescue have the potential to remove large quantities of manure P. [source]


    CONTROLLING PHOSPHORUS IN RUNOFF FROM LONG TERM DAIRY WASTE APPLICATION FIELDS,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2004
    Anne M.S. McFarland
    ABSTRACT: Phosphorus (P) in runoff from long term animal waste application fields can contribute to accelerated eutrophication of surface waters. Manure when applied at nitrogen (N) agronomic rates generally increases soil P concentrations, which can increase runoff of soluble P. Along the North Bosque River in central Texas, dairy waste application fields are identified as the most controllable nonpoint source of soluble P in a total maximum daily load. To evaluate P reduction practices for fields high in soil extractable P, edge-of-field runoff was measured from paired plots of Coastal bermudagrass (Cynodon dactylon) and sorghum (Sorghum bicolor)/ winter wheat (Triticum spp.). Plots (about 0.4 ha) received manure at P agronomic rates following Texas permit guidelines and commercial N during the pretreatment period. During the post-treatment period, control plots continued to receive manure at P agronomic rates and commercial N. Treatment plots received only commercial N during the post-treatment period. Use of only commercial N on soils with high extractable P levels significantly decreased P loadings in edge-of-field runoff by at least 40 percent, but runoff concentrations sometimes increased. No notable changes in extractable soil P concentrations were observed after five years of monitoring due to drought conditions limiting forage uptake and removal. [source]


    Electrochemical Deodorization and Disinfection of Hog Manure

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2007
    Dorin Bejan
    Abstract Electrolysis of liquid hog manure under direct current achieved amelioration of odour, in terms of both odour quality and odour intensity, and simultaneously reduced the population of odour-causing bacteria by two orders of magnitude. A comparison of anode materials indicated that hydroxyl radical-forming anodes (boron-doped diamond and Ebonex) were the most effective, but unfortunately these materials are not yet available commercially in large size format. Dimensionally stable anodes composed of Ti/IrO2 were found to be satisfactory; lead-based anodes leached unacceptable quantities of inorganic lead into the treated manure, and graphite anodes tended to disintegrate on long-term use. The mechanism of action of the bactericidal effect involves a combination of toxicity by O2 that is released at the anode and hypochlorination due to the chloride ion that is present in manure. The proposed technology was shown to be successful at the 27 L scale in an on-farm demonstration. L'électrolyse du purin de porc liquide avec un courant continu a permis d'améliorer l'odeur, tant en qualité qu'en intensité, et simultanément, de réduire la population de bactéries à l'origine de l'odeur de deux ordres de grandeur. Une comparaison des matériaux anodiques indique que les anodes formant des radicaux libres d'hydroxyle (diamant amélioré au bore et Ebonex) sont les plus efficaces, mais malheureusement ces matériaux ne sont pas encore disponibles en grand quantité dans le commerce. On a trouvé que des anodes dimensionnellement stables composées de Ti/IrO2 étaient satisfaisantes, tandis que les anodes à base de plomb ont donné des quantités inacceptables de plomb lixivié non organique dans le purin traité et les anodes graphites tendent à se désintégrer avec une utilisation prolongée. Le mécanisme d'action de l'effet bactéricide implique une combinaison de toxicité par l'O2 qui est libéré à l'anode et par l'hypochloruration à cause de l'ion de chlorure présent dans le purin. On montre que la technologie proposée est un succès dans une démonstration à l'échelle de 27 L dans une ferme [source]


    Comparison of Suppressiveness of Vermicomposts Produced from Animal Manures and Sewage Sludge against Phytophthora nicotianae Breda de Haan var. nicotianae

    JOURNAL OF PHYTOPATHOLOGY, Issue 2 2001
    M. Szczech
    The degrees of suppression produced by vermicomposts produced from cattle manure, sheep manure or horse manure and by vermicomposts produced from sewage sludge were compared in greenhouse experiments. The effect of these vermicomposts on the growth and infection of tomato seedlings by Phytophthora nicotianae var. nicotianae was studied. The density of the pathogen and the number of micro-organisms in container media amended with vermicomposts were also analysed. The vermicomposts produced from animal manure significantly reduced the infection of tomato seedlings by the pathogen. The density of P. nicotianae in media which included these vermicomposts was similar to that in infested peat substrate (control treatment). The vermicomposts from sewage sludge did not protect tomato seedlings against P. nicotianae. They also significantly inhibited growth of the plants as well as decreasing the density of the pathogen in container media. In general the vermicomposts had no effect on total number of micro-organisms in potting media compared with control. They only had higher levels of actinomycetes but this did not appear to correspond with their ability to suppress the pathogen. Ein Vergleich der Suppressivität von Vermikomposten aus tierischem Mist bzw. Klärschlamm gegenüber Phytophthora nicotianae Breda de Haan var. nicotianae In Gewächshausversuchen wurde die Suppressivität von Vermikomposten, die aus Rinder-, Schaf- bzw. Pferdemist hergestellt worden waren, mit solchen, die aus Klärschlamm gewonnen wurden, verglichen. Der Einfluss dieser Komposttypen auf die Infektion von Tomatensämlingen mit Phytophthora nicotianae var. nicotianae wurde untersucht. Außerdem wurden sowohl die Inokulumdichte als auch eine Gesamtkeimzahl der mit den Komposten versetzten Topferden ermittelt. Die aus tierischem Mist hergestellten Vermikomposte reduzierten die Infektion der Tomatensämlinge mit dem Pathogen signifikant. Die P. nicotianae -Dichte in Topferden versetzt mit diesen Vermikomposten war vergleichbar mit inokuliertem Torfsubstrat (die Kontrolle). Die Vermikomposte aus Klärschlamm lieferten den Tomatensämlingen keinen Schutz gegen P. nicotianae. Außerdem verursachten sie eine signifikante Wachstumshemmung der Pflanzen und reduzierten zusätzlich die P. nicotianae -Dichte im Topfsubstrat. Im allgemein wurde die Gesamtzahl an Mikroorganismen in den Topfsubstraten durch die Vermikomposte nicht beeinflusst. Die Actinomyceten-Populationen nahmen zu, eine Beobachtung, die jedoch keine Korrelation zu deren Pathogensuppressivität hatte. [source]


    Forage collection, substrate preparation, and diet composition in fungus-growing ants

    ECOLOGICAL ENTOMOLOGY, Issue 3 2010
    HENRIK H. DE FINE LICHT
    1. Variation and control of nutritional input is an important selective force in the evolution of mutualistic interactions and may significantly affect coevolutionary modifications in partner species. 2. The attine fungus-growing ants are a tribe of more than 230 described species (12 genera) that use a variety of different substrates to manure the symbiotic fungus they cultivate inside the nest. Common ,wisdom' is that the conspicuous leaf-cutting ants primarily use freshly cut plant material, whereas most of the other attine species use dry and partly degraded plant material such as leaf litter and caterpillar frass, but systematic comparative studies of actual resource acquisition across the attine ants have not been done. 3. Here we review 179 literature records of diet composition across the extant genera of fungus-growing ants. The records confirm the dependence of leaf-cutting ants on fresh vegetation but find that flowers, dry plant debris, seeds (husks), and insect frass are used by all genera, whereas other substrates such as nectar and insect carcasses are only used by some. 4. Diet composition was significantly correlated with ant substrate preparation behaviours before adding forage to the fungus garden, indicating that diet composition and farming practices have co-evolved. Neither diet nor preparation behaviours changed when a clade within the paleoattine genus Apterostigma shifted from rearing leucocoprinous fungi to cultivating pterulaceous fungi, but the evolutionary derived transition to yeast growing in the Cyphomyrmex rimosus group, which relies almost exclusively on nectar and insect frass, was associated with specific changes in diet composition. 5. The co-evolutionary transitions in diet composition across the genera of attine ants indicate that fungus-farming insect societies have the possibility to obtain more optimal fungal crops via artificial selection, analogous to documented practice in human subsistence farming. [source]


    Roxarsone and transformation products in chicken manure: Determination by capillary electrophoresis-inductively coupled plasma-mass spectrometry

    ELECTROPHORESIS, Issue 7-8 2005
    Charlita G. Rosal
    Abstract The determination of the animal feed additive roxarsone (3-nitro-4-hydroxyphenylarsonic acid) and six of its possible transformation products (arsenite, arsenate, monomethylarsonate, dimethylarsinate, 3-amino-4-hydroxyphenylarsonic acid, and 4-hydroxyphenylarsonic acid) in chicken manure was investigated using capillary electrophoresis-inductively coupled plasma-mass spectrometry (CE-ICP-MS). Initial method development was conducted using ultraviolet (UV) detection for ruggedness and time efficiency. Separation of these seven arsenic species was effected using a 20,mM phosphate buffer at pH 5.7. The CE-ICP-MS limits of detection in terms of As for each of the species was in the low µg·L,1 range, corresponding to absolute detection limits in the range 20,70,fg As (based on a 23,nL injection). Overall, the method developed in this study provides high selectivity and low limits of detection (1,3,µg·L,1 or low-ppb, based on As), uses small sample volume (low nL), and produces minimal wastes. [source]


    Microbial Community Dynamics of a Continuous Mesophilic Anaerobic Biogas Digester Fed with Sugar Beet Silage

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 4 2008
    B. Demirel
    Abstract The aim of the study was to investigate the long-term fermentation of an extremely sour substrate without any addition of manure. In the future, the limitation of manure and therefore the anaerobic digestion of silage with a very low buffering capacity will be an increasing general bottleneck for energy production from renewable biomass. During the mesophilic anaerobic digestion of sugar beet silage (without top and leaves) as the sole substrate (without any addition of manure), which had an extreme low pH of around 3.3, the highest specific gas production rate (spec. GPR) of 0.72,L/g volatile solids (VS),d was achieved at a hydraulic retention time (HRT) of 25,days compared to an organic loading rate (OLR) of 3.97,g VS/L,d at a pH of around 6.80. The methane (CH4) content of the digester ranged between 58 and 67,%, with an average of 63,%. The use of a new charge of substrate (a new harvest of the same substrate) with higher phosphate content improved the performance of the biogas digester significantly. The change of the substrate charge also seemed to affect the methanogenic population dynamics positively, thus improving the reactor performance. Using a new substrate charge, a further decrease in the HRT from 25 to 15,days did not influence the digester performance and did not seem to affect the structure of the methanogenic population significantly. However, a decrease in the HRT affected the size of the methanogenic population adversely. The lower spec. GPR of 0.54,L/g,VS,d attained on day,15 of the HRT could be attributed to a lower size of methanogenic population present in the anaerobic digester during this stage of the process. Furthermore, since sugar beet silage is a relatively poor substrate, in terms of the buffering capacity and the availability of nutrients, an external supply of buffering agents and nutrients is a prerequisite for a safe and stable digester operation. [source]


    The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes

    ENVIRONMENTAL MICROBIOLOGY, Issue 6 2008
    Achim Schmalenberger
    Summary Sulfonates are a key component of the sulfur present in agricultural soils. Their mobilization as part of the soil sulfur cycle is mediated by rhizobacteria, and involves the oxidoreductase AsfA. In this study, the effect of fertilization regime on rhizosphere bacterial asfA distribution was examined at the Broadbalk long-term wheat experiment, Rothamsted, UK, which was established in 1843, and has included a sulfur-free treatment since 2001. Direct isolation of desulfonating rhizobacteria from the wheat rhizospheres led to the identification of several Variovorax and Polaromonas strains, all of which contained the asfA gene. Rhizosphere DNA was isolated from wheat rhizospheres in plots fertilized with inorganic fertilizer with and without sulfur, with farmyard manure or from unfertilized plots. Genetic profiling of 16S rRNA gene fragments [denaturing gradient gel electrophoresis (DGGE)] from the wheat rhizospheres revealed that the level of inorganic sulfate in the inorganic fertilizer was correlated with changes in the general bacterial community structure and the betaproteobacterial community structure in particular. Community analysis at the functional gene level (asfA) showed that 40% of clones in asfAB clone libraries were affiliated to the genus Variovorax. Analysis of asfAB -based terminal restriction fragment length polymorphism (T-RFLP) fingerprints showed considerable differences between sulfate-free treatments and those where sulfate was applied. The results suggest the occurrence of desulfonating bacterial communities that are specific to the fertilization regime chosen and that arylsulfonates play an important role in rhizobacterial sulfur nutrition. [source]


    Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam

    ENVIRONMENTAL MICROBIOLOGY, Issue 6 2008
    Ju-pei Shen
    Summary The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities under different long-term (17 years) fertilization practices were investigated using real-time polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). A sandy loam with pH (H2O) ranging from 8.3 to 8.7 was sampled in years 2006 and 2007, including seven fertilization treatments of control without fertilizers (CK), those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): NP, NK, PK and NPK, half chemical fertilizers NPK plus half organic manure (1/2OMN) and organic manure (OM). The highest bacterial amoA gene copy numbers were found in those treatments receiving N fertilizer. The archaeal amoA gene copy numbers ranging from 1.54 × 107 to 4.25 × 107 per gram of dry soil were significantly higher than those of bacterial amoA genes, ranging from 1.24 × 105 to 2.79 × 106 per gram of dry soil, which indicated a potential role of AOA in nitrification. Ammonia-oxidizing bacteria abundance had significant correlations with soil pH and potential nitrification rates. Denaturing gradient gel electrophoresis patterns revealed that the fertilization resulted in an obvious change of the AOB community, while no significant change of the AOA community was observed among different treatments. Phylogenetic analysis showed a dominance of Nitrosospira -like sequences, while three bands were affiliated with the Nitrosomonas genus. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). These results suggest that long-term fertilization had a significant impact on AOB abundance and composition, while minimal on AOA in the alkaline soil. [source]


    Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices

    ENVIRONMENTAL MICROBIOLOGY, Issue 9 2007
    Ji-zheng He
    Summary The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H2O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira- like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. [source]


    Bioethanol from agricultural waste residues

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2008
    Pascale Champagne
    Abstract Under the Kyoto Protocol, the Government of Canada has committed to reducing its greenhouse gas emissions by 6% from 1990 levels between 2008 and 2012. Ethanol-blended gasolines have the potential to contribute significantly to these emission reductions. Ethanol is derived from biologically renewable resources and can be employed to replace octane enhancers and aromatic hydrocarbons or oxygenates. To date, the ethanol production industry in Canada is comprised mainly of small-scale plants producing ethanol primarily from agricultural crops as feedstock. Research interests in the area of bioethanol production from organic waste materials emerged in the late 1980. Significant advances in lignocellulosic material extraction and enzymatic hydrolysis have been reported in the last decade, however, continued research efforts are essential for the development of technically feasible and economically viable large-scale enzyme-based biomass-to-ethanol conversion processes. This research aims to develop and test an enzyme-based biomass-to-ethanol conversion process, which employs organic waste materials, such as livestock manures, as alternative sources of cellulosic material feedstock. The source of the livestock manure, manure management practices and cellulose extraction procedures have a significant impact on the quantity and quality of the cellulosic materials derived. As such, raw feedstock materials must be carefully characterized to assess the impact of these factors on the yield of bioethanol and residual end products. The success of cellulose-to-ethanol conversion processes for cellulose extracted from these waste materials as feedstock is generally a function of cellulose fiber pretreatment, enzyme selection and operating conditions. These will differ depending on the source of the waste material feedstock. The long-term benefits of this research will be to introduce a sustainable solid waste management strategy for a number of livestock manure and other lignocellulosic waste materials; contribute to the mitigation in greenhouse gases through sustained carbon and nutrient recycling; reduce the potential for water, air, and soil contamination associated with land disposal of organic waste materials; and to broaden the feedstock source of raw materials for the ethanol production industry. © 2007 American Institute of Chemical Engineers Environ Prog, 2008 [source]


    Effect of bacteria-mineral water produced from bio-reacted fowl dung on seed germination of wheat (Triticum aestivum) and rice (Oryza sativa L.)

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2008
    Wenyuan He
    Abstract Positive effects of Bacteria-mineral water (BMW) produced from bio-reacted manure on plant growth and crop seed germination has been observed in agriculture practices. The experiment was conducted to examine the effects of BMW produced from bio-reacted fowl dung on seed germination of rice (Oryza sativa L.) and wheat (Triticum aestivum). Seeds were soaked in BMW at concentrations of 100, 10, 1, 0.5, 0.25, 0.125, 0.025, and 0% (control) and then incubated at 25°C ± 1°C in a seed germinator for 7 days. All BMW treatments not only enhanced germination energy and final germination percentage of wheat and rice seeds, but also significantly improved (P < 0.05) seed vigor index (VI). Compared to control, treatment with 0.25% BMW had significant effects (P < 0.05) on final germination percentage and increased significantly seed germination percentage (7.34%) and germination energy (8.67%) of wheat seeds. There were strong correlations between germination energy and final germination percentage (P < 0.05), germination index (P < 0.05), VI (P < 0.05), water absorption rate (P < 0.01), and storage reserve transform rate (P < 0.01). While for rice seeds, 0.25% and 0.125% BMW treatments significantly improved (P < 0.05) final germination percentage by 8% separately, and germination energy enhanced 8.66% and 9.33% respectively. There were strong correlations between germination energy (and final germination percentage) and other parameters except for water adsorption rate and storage reserve loss rate. BMW consistently showed positive effects on crop seed germination. 0.25% BMW treatment may be the best concentration to stimulate wheat (Triticum aestivum) seeds germination, while 0.125,0.25% BMW would be the most suitable concentration range for rice (Oryza sativa L.) seeds. © 2008 American Institute of Chemical Engineers Environ Prog, 2008 [source]


    Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2010
    Lixian Yao
    Abstract Roxarsone (ROX) is widely used as a feed additive in intensive animal production. While an animal is fed with ROX, the As compounds in the manure primarily occur as ROX and its metabolites, including arsenate (As[V]), arsenite (As[III]), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Animal manure is commonly land applied with phosphorous fertilizers in China. A pot experiment was conducted to investigate the phytoavailability of ROX, As(V), As(III), MMA, and DMA in water spinach (Ipomoea aquatica), with the soil amended with 0, 0.25, 0.50, 1.0, and 2.0,g PO4/kg, respectively, plus 2% (w/w manure/soil) chicken manure (CM) bearing ROX and its metabolites. The results indicate that this species of water spinach cannot accumulate ROX and MMA at detectable levels, but As(V), As(III), and DMA were present in all plant samples. Increased phosphorous decreased the shoot As(V) and As(III) in water spinach but did not affect the root As(V). The shoot DMA and root As(III) and DMA were decreased/increased and then increased/decreased by elevated phosphorous. The total phosphorous content (P) in plant tissue did not correlate with the total As or the three As species in tissues. Arsenate, As(III), and DMA were more easily accumulated in the roots, and phosphate considerably inhibited their upward transport. Dimethylarsinic acid had higher transport efficiency than As(V) and As(III), but As(III) was dominant in tissues. Conclusively, phosphate had multiple effects on the accumulation and transport of ROX metabolites, which depended on their levels. However, proper utilization of phosphate fertilizer can decrease the accumulation of ROX metabolites in water spinach when treated with CM containing ROX and its metabolites. Environ. Toxicol. Chem. 2010;29:947,951. © 2009 SETAC [source]


    The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2006
    Thomas L. ter Laak
    Abstract Antimicrobial agents are the most heavily used pharmaceuticals in intensive husbandry. Their usual discharge pathway is application to agricultural land as constituents of animal manure, which is used as fertilizer. Many of these compounds undergo pH-dependent speciation and, therefore, might occur as charged species in the soil environment. Hence, pH and ionic strength of the soil suspension can affect the sorption behavior of these compounds to soil. Consequently, the soil sorption of three antimicrobial agents,sulfachloropyridazine (SCP), tylosin (TYL), and oxytetracycline (OTC),was investigated. Their respective sorption coefficients in two agricultural soils ranged from 1.5 to 1,800 L/kg. Sorption coefficients were greater under acidic conditions. Addition of an electrolyte to the solution led to decreased sorption of TYL and OTC by a factor of 3 to 20, but it did not influence the sorption of SCP. This behavior was analyzed by accounting for the pH-dependent speciation of TYL and OTC and considering the presence of OTC-calcium complexes. It appears that the decreased sorption of TYL and OTC with increasing ionic strength results from competition of the electrolyte cations with the positively charged TYL species and the positively charged OTC complexes. A model linking sorbate speciation with species-specific sorption coefficients can describe the pH dependence of the apparent sorption coefficients. This modeling approach is proposed for implementation in the assessment of sorption of ionizable compounds. [source]


    Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland County, Ontario, Canada

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2006
    Jules C. Carlson
    Abstract A robust high-throughput method was refined to extract three growth-promoting antibiotics, tylosin (TYL), chlortetracycline (CTC), and monensin (MON), from soil. Analysis was performed by electrospray liquid chromatography tandem mass spectrometry. Soil dissipation rate studies were performed in a farm field soil for antibiotics applied with and without manure. Tylosin, CTC, and MON followed first-order dissipation kinetics with half-lives of 4.5, 24, and 3.3 d, respectively, with the addition of manure and 6.1, 21, and 3.8 d, respectively, without manure. Manure application significantly increased TYL dissipation rate, perhaps because of the introduced microbial flora, but had no significant effect on CTC or MON. Monensin dissipation half-life was found to be much shorter in the field study than in a controlled laboratory study, perhaps because of differences in microbial communities. The antimicrobials were not highly mobile. Chlortetracycline was the only antibiotic detected at 25 to 35 cm depth and only up to 2% of the initial concentration in a sandy loam soil. These antibiotics are therefore expected to degrade primarily in agricultural soils before moving to greater depths or to groundwater in significant concentrations in most agricultural systems. [source]


    A review of the use of moxidectin in horses

    EQUINE VETERINARY EDUCATION, Issue 10 2008
    J. Schumacher
    Summary Moxidectin has broad-spectrum anti-nematodal and anti-arthropodal activities in the horse but is not effective against tapeworms or flukes. Moxidectin and ivermectin have the same efficacy against internal, adult parasites of horses. Moxidectin, however, is highly effective in eliminating encysted and hypobiotic larval stages of cyathostomins, whereas ivermectin is not. Treatment of horses with moxidectin results in an egg-reappearance period (ERP) of 15,24 weeks. Because of its long ERP, moxidectin is labelled to be used at 12 week intervals. Moxidectin may provide protection against infection by ingested cyathostomin larvae for 2,3 weeks after it is administered. The larvicidal activity of moxidectin has often been compared to that of fenbendazole administered at either 7.5 or 10 mg/kg bwt for 5 consecutive days. The efficacy of fenbendazole, when administered daily for 5 consecutive days at 7.5 or 10 mg/kg bwt, against all stages of cyathostomins is often less than that of moxidectin because resistance of cyathostomins to benzimidazoles is prevalent worldwide, and the 5 day course of fenbendazole does not overcome this resistance. There are now reports of resistance of ascarids to moxidectin. Overt resistance of cyathostomins and a shortened egg re-emergence period after treatment with moxidectin have been reported. Rapid removal of manure by natural fauna can significantly reduce larval nematode concentrations and thereby reduce intervals of anthelmintic treatment. Of the macrocyclic lactones, moxidectin has the least deleterious effect on faecal fauna. [source]


    Organic carbon additions: effects on soil bio-physical and physico-chemical properties

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2009
    A. Bhogal
    Summary The effects of organic carbon (OC) additions from farm manures and crop residues on selected soil bio-physical and physico-chemical properties were measured at seven experimental sites, on contrasting soil types, with a history of repeated applications of farm manure or differential rates of inorganic fertilizer nitrogen (N). Repeated (> 7 years annual additions) and relatively large OC inputs (up to 65 t OC ha,1) were needed to produce measurable changes in soil properties, particularly physical properties. However, over all the study sites, there was a positive relationship between OC inputs and changes in total soil OC and ,light' fraction OC (LFOC), with LFOC providing a more sensitive indicator of changes in soil organic matter status. Total soil OC increased by an average of 3% for every 10 t ha,1 manure OC applied, whereas LFOC increased by c. 14%. The measured soil OC increases were equivalent to c. 23% of the manure OC applied (up to 65 t OC ha,1 applied over 9 years) and c. 22% of the crop residue OC applied (up to 32 t OC ha,1 over 23 years). The manure OC inputs (but not crop residue OC inputs) increased topsoil porosity and plant available water capacity, and decreased bulk density by 0.6%, 2.5% and 0.5% with every 10 t ha,1 manure OC applied, respectively. Both OC sources increased the size of the microbial biomass (11% increase in biomass C with 10 t OC ha,1 input), but only manure OC increased its activity (16% increase in the soil respiration rate with 10 t OC ha,1 input). Likewise, the potentially mineralizable N pool only increased with manure N inputs (14% increase with 1 t manure total N ha,1). However, these soil quality benefits need to be balanced with any potential environmental impacts, such as excessive nutrient accumulation, increased nitrate leaching and phosphorus losses and gaseous emissions to the atmosphere. [source]


    Amino acid 15N in long-term bare fallow soils: influence of annual N fertilizer and manure applications

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2008
    R. Bol
    Summary Long-term dynamics of amino acids (AAs), from a bare fallow soil experiment (established in 1928 at INRA-Versailles, France), were examined in unamended control (Con) plots and plots treated with ammonium sulphate (Amsul), ammonium nitrate (Amnit), sodium nitrate (Nanit) or with animal manure (Man). Topsoil (0,25 cm) from 1929, 1963 and 1997 was analysed for C, N and 15N content and distribution of 18 amino acids recovered after acid hydrolysis with 6 m HCl. With time, soil N, C and AA content were reduced in Con, Amsul, Amnit and Nanit, but increased in Man. However, the absolute N loss was 3,11 times larger in Man than Nanit, Amsul, Amnit and Con, due to the much higher N annual inputs applied to Man. From 1929 to 1997 in Con, Amsul, Amnit and Nanit the whole soil and non-hydrolysable-N pool ,15N increased associated with the loss of N (indicative of Rayleigh 15N/14N fractionation). No ,15N change from 1929 to 1997 was found in the hydrolysable AA-N (HAN) pool. Fertilizer N inputs aided stabilization of soil AA-N, as AA half-life in the mineral N fertilizer treatments increased from 34 years in 1963 to 50 years in 1997. The ,15N values of alanine and leucine reflected both source input and 15N/14N fractionation effects in soils. The ,15N increase of ornithine (,6,) was similar to the whole soil. The ,15N change of phenylalanine in Con (decrease of 7,) was related to its proportional loss since 1929, whereas for Amsul, Amnit, Nanit and Man it was associated with isotope effects caused by the fertilizer inputs. However, the soil ,15N value of most individual amino acids (IAAs) did not significantly change over nearly 70 years, even with mineral or organic N inputs. We conclude for these bare fallow systems that: (i) ,15N changes in the whole soil and non-hydrolysable AA pool were solely driven by microbial processes and not by the nature of fertilizer inputs, and (ii) without plant inputs, the ,15N of the HAN pool and (most) IAAs may reflect the influence of plant,soil interactions from the previous (arable cropping) rather than present (fallow) land use on these soil ,15N values. [source]


    Effect of organic matter applications on 13C-NMR spectra of humic acids of soil

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2008
    S. Dou
    Summary Much attention has been paid to improving soil fertility with organic matter (OM) application, which not only deals with organic wastes and protects the environment, but also maintains soil fertility and increases crop yields. Much research has also been on the effects of OM applications on the soil's physical, chemical and biological properties, but relatively less attention has been spent on humic substance (HS). In order to clarify the mechanism of improving soil fertility by applying OM, we analysed the changes of structural characteristics of humic acid (HA) from OM applications to soils by 13C-NMR, chemical analysis, thermal analysis, optical properties, IR and fluorescence spectroscopy. Samples of a brown soil (Paleudalf) and a paddy soil (an anthropogenic soil originating from Udifluvents) were collected from the plough layer of the long-term field experiment at Shenyang Agricultural University and Liaoning Provincial Alkali-Saline Soil Institute, respectively. Both field experiments included three treatments each: (i) brown soil, zero-treatment (CKbr) and two pig manure (PM) applications (O1 and O2) at annual rates of 0.9 t ha,1 and 1.8 t ha,1 of organic carbon, respectively; and (ii) paddy soil, zero-treatment (CKpad), pig manure (Op) and rice straw (Or) at annual rates of 2.62 t ha,1 and 1.43 t ha,1 of organic carbon, respectively. An incubation experiment was also carried out to test the field experiment on the brown soil, namely four treatments: zero-treatment (CKc), and three pig manure applications at rates of 30 g kg,1 (C1), 50 g kg,1 (C2) and 70 g kg,1 (C3), respectively. The total incubation was 180 days. The results indicated that number-average molecular weights (Mn), total acidity, aromaticity, excitation maximum wavelength (,Exmax), and the heat ratio of the high to moderate temperature exothermic regions (H3/H2) of the HA all decreased after OM application. The degree of activation (AD), the absorption intensity ratio of 2920 cm,1 to 1720 cm,1 in infrared spectra (IR2920/1720), alkyl C and O-alkyl C of the HA increased. The HA structure tended to become simpler and more aliphatic. [source]


    The historic man-made soils of the Generalife garden (La Alhambra, Granada, Spain)

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2007
    R. Delgado
    Summary We studied the soils of the Patio de la Acequia garden of the Generalife, a palatial villa forming part of La Alhambra, a World Heritage Site in Granada, Spain. This garden, which is estimated to be around 700 years old, is the oldest historical garden in the Western World. The soils are man-made cumulimollihumic-calcaric (hypereutric, anthric) Regosols. Noteworthy amongst the main pedogenic processes, in relation to the human activities of cultivation, irrigation and tillage, are horizonation, melanization (the contents of organic carbon varied between 0.59% and 8.87%, and those of P205 extracted with citric acid between 723 mg kg,1 and 7333 mg kg,1, with maximae in the Ap horizons) and structure formation. The soil fabric, studied at the ultramicroscopic level using scanning electron microscopy, is of laminar and partition-walls' type in the lower horizons, depending on the microped zones. The partition-walls' fabrics found are different to those of the possible pre-existing sedimentary fabrics. These are numerous lithological discontinuities and at least two burials, leading us to deduce that there have been two main stages of filling with materials in the formation of these soils. The first is Arabic-Medieval (13th century), when the garden was created, its surface being some 50 cm below the level of the paved area of the present patio. In the deeper parts, the materials employed in the fill are similar to the in situ soils of the zone, unaffected by the buildings. The second stage is Christian (15th century to the present day). During this period the Medieval garden was gradually buried under a layer of materials from the nearby soils and/or sediments mixed with manure until the surface was only just below the level of the paved area of the patio. In this work we discuss the difficult classification of these relatively little studied soils. In spite of their being clearly related to human activity, they are not classified as Anthrosols in the FAO system (1998) because soil materials cannot be classified as anthropopedogenic or as anthropogeomorphic. [source]


    The concentrations of fatty acids in organo-mineral particle-size fractions of a Chernozem

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2004
    G. Jandl
    Summary Fatty acids, the most abundant class of soil lipids, indicate pedogenetic processes and soil management. However, their quantitative distribution in organo-mineral particle-size fractions is unknown. The concentrations of n -C10:0 to n -C34:0 fatty acids both in whole soil samples and in the organo-mineral particle-size fractions of the Ap horizon of a Chernozem were determined (i) to evaluate the effects of long-term fertilization and (ii) to investigate their influence on the aggregation of organo-mineral primary particles. Quantification by gas chromatography/mass spectrometry (GC/MS) showed that long-term fertilization with nitrogen, phosphorus and potassium (NPK) and farmyard manure (FYM) led to larger concentrations (25.8 µg g,1) of fatty acids than in the unfertilized sample (22.0 µg g,1). For particle-size fractions of the unfertilized soil, the fatty acid concentrations increased from the coarse silt to the clay fractions (except for fine silt). Fertilization with NPK and FYM resulted in absolute enrichments of n -C21:0 to n -C34:0 fatty acids with a maximum at n -C28:0 in clay (×2.2), medium silt (×2.0), coarse silt (×1.8) and sand (×2.9) compared with the unfertilized treatment (the factors of enrichment are given in parentheses). New evidence for the aggregate stabilizing function of n -C21:0 to n -C34:0 fatty acids was shown by the characteristic pattern in size-fractionated, disaggregated and aggregated samples. Highly significant correlations of fatty acid concentrations with organic C concentrations and specific surface areas are interpreted as indicators of (i) trapping of fatty acids in organic matter macromolecules and (ii) direct bonding to mineral surfaces. This interpretation was supported by the thermal volatilization and determination of fatty acids by pyrolysis-field ionization mass spectrometry (Py-FIMS). [source]


    Increases in pH and soluble salts influence the effect that additions of organic residues have on concentrations of exchangeable and soil solution aluminium

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2002
    M. S. Mokolobate
    Summary It has been suggested that additions of organic residues to acid soils can ameliorate Al toxicity. For this reason the effects of additions of four organic residues to an acid soil on pH and exchangeable and soil solution Al were investigated. The residues were grass, household compost, filter cake (a waste product from sugar mills) and poultry manure, and they were added at rates equivalent to 10 and 20 t ha,1. Additions of residues increased soil pH measured in KCl (pH(KCl)) and decreased exchangeable Al3+ in the order poultry manure > filter cake > household compost > grass. The mechanism responsible for the increase in pH differed for the different residues. Poultry manure treatment resulted in lower soil pH measured in water (pH(water)) and larger concentrations of total (AlT) and monomeric (Almono) Al in soil solution than did filter cake. This was attributed to a soluble salt effect, originating from the large cation content of poultry manure, displacing exchangeable Al3+ and H+ back into soil solution. The considerably larger concentrations of soluble C in soil solution originating from the poultry manure may also have maintained greater concentrations of Al in soluble complexed form. There was a significant negative correlation (r = ,0.94) between pH(KCl) and exchangeable Al. Concentrations of AlT and Almono in soil solution were not closely related with pH or exchangeable Al. The results suggest that although additions of organic residues can increase soil pH and decrease Al solubility, increases in soluble salt and soluble C concentrations in soil solution can substantially modify these effects. [source]


    Loss of phosphorus from soil in semi-arid northern Tanzania as a result of cropping: evidence from sequential extraction and 31P-NMR spectroscopy

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2000
    D. Solomon
    Summary In semi-arid northern Tanzania, the native woodland is being rapidly cleared and replaced by low input agriculture. This has resulted in pronounced environmental degradation, and in particular loss of phosphorus (P) from the soil. We have used sequential extraction and 31P-NMR to investigate the effects of land use changes, i.e. native woodland, degraded woodland, cultivation for 3 and 15 years and homestead fields where manure was applied, on the amount and structural composition of P in this soil. Clearing and continuous cultivation reduced both organic and inorganic P in the soil. The difference in the amount of organic P from the bulk soil of the fields cultivated for 3 and 15 years was not statistically significant (P <,0.05), suggesting that most of the depletion in organic P occurred during the first 3 years of cultivation. By contrast, in the homesteads, there was much organic and inorganic P in the soil. The 31P-NMR revealed that cultivation resulted in a 53% depletion of orthophosphate diester P, whereas only a 30% and 39% reduction of orthophosphate monoester P was found in the bulk soil after 3 and 15 years of cultivation, respectively. These results concur with the suggestion that diester P constitutes more easily mineralizable forms of organic P in soil than does monoester P. Our 31P-NMR also showed that 70% of the inorganic orthophosphate P was depleted from the coarse and fine sand separates as a result of cultivation. The influence of clearing and subsequent cropping on the amount and forms of P was more pronounced in the coarse and fine sand than in the silt and clay, stressing the importance of particle size and chemical properties such as organic matter and oxides in the availability of P in this soil. Our results show that the current low input agricultural practice is not sustainable, and that practices must be developed to combat the ongoing degradation of the soil. A combined use of available organic materials such as animal manure with the judicious use of inorganic fertilizers can replenish the soil's fertility. [source]


    Late prehistoric soil fertility, irrigation management, and agricultural production in northwest coastal Peru

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2004
    Lee Nordt
    The Pampa de Chaparrí (Pampa) in hyperarid northwest coastal Peru is an ideal area to study late prehispanic agricultural technology and production because irrigation canals and furrowed fields have been preserved since abandonment approximately 500 years ago. We collected 55 samples for soil characterization, fertility, and micromorphic analyses and compared these results to a noncultivated control soil previously sampled in an adjacent valley. Natural soil fertility levels for maize, cotton, and bean production were generally high during late prehispanic cultivation in the Pampa. Maintaining adequate nitrogren levels for production, however, would have required external inputs from livestock manure, guano, or leguminous plants. The management of low soil salinity levels was possible because of rapidly permeable soils and irrigation waters low in salt. Based on available water capacity and climate conditions, the Blaney-Criddle Equation yields evapotranspiration rates indicating that irrigation frequency was necessary in a range of every 10,16 days during the growing season. © 2004 Wiley Periodicals, Inc. [source]


    Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades

    GLOBAL CHANGE BIOLOGY, Issue 7 2009
    D. W. HOPKINS
    Abstract A recent report of widespread declines in soil organic C (SOC) in the UK over the 10,25 years until the early 2000s has focussed attention on the importance of resampling previously characterized sites to assess long-term trends in SOC contents and the importance of soils as a potentially volatile and globally significant reservoir of terrestrial C. We have used two sets of long-term experimental plots which have been under constant and known management for over a century and for which historical data exist that allow comparison over recent decades to determine what, if any, changes in SOC content have occurred. The plots used are the Palace Leas (PL) Meadow Hay Plots in north-east England (UK) established in 1897, and from the Park Grass (PG) Continuous Hay experiment established in 1856 at Rothamsted in south-east England. Collectively, these plots represent the only grassland sites in the UK under long-term management where changes in SOC over several decades can be assessed, and are probably unique in the world. The plots have received different manure and fertilizer treatment and have been under known management for at least 100 years. In 1982, total SOC contents were determined for the 0,27 cm layer of six of the PL plots using measurements of SOC concentrations, bulk density and soil depth. In 2006, the same six PL plots were resampled and SOC contents determined again. Four of the plots showed no net change in SOC content, but two plots showed net loss of SOC of 15% and 17% (amounting to decreases of 18 and 15 t C ha,1) since 1982. However, these differences in total SOC content were in a similar range to the variations in bulk density (6,31%) with changing soil water content. In 1959, the soil masses and SOC concentrations to 23 cm depth were measured on six PG plots with fertilizer and manure treatments corresponding closely with those measured on PL. In 2002, the SOC concentrations on the same plots were measured again. On three of the PG plots, SOC concentrations had declined by 2,10%, but in the other three it had increased by 4,8% between 1959 and 2002. If it is assumed that the soil bulk density had not changed over this period, the losses of SOC from the top soils ranged range from 10 to 3 t C ha,1, while the gains ranged from 4 to 7 t C ha,1. When the differences with time in SOC contents for the six PL and the six PG plots were examined using paired t -tests, that is, regarding the plots as two sets of six replicate permanent grasslands, there were no significant differences between 1982 and 2006 for the PL plots or between 1959 and 2002 for the PG plots. Thus, these independent observations on similar plots at PL and PG indicate there has been no consistent decrease in SOC stocks in surface soils under old, permanent grassland in England in recent decades, even though meteorological records for both sites indicate significant warming of the soil and air between 1980 and 2000. Because the potential influences of changes in management or land use have been definitively excluded, and measured rather than derived bulk densities have been used to convert from SOC concentrations to SOC amounts, our observations question whether for permanent grassland in England, losses in SOC in recent decades reported elsewhere can be attributed to widespread environmental change. [source]


    Carbon emission and sequestration by agricultural land use: a model study for Europe

    GLOBAL CHANGE BIOLOGY, Issue 6 2002
    L. M. Vleeshouwers
    Abstract A model was developed to calculate carbon fluxes from agricultural soils. The model includes the effects of crop (species, yield and rotation), climate (temperature, rainfall and evapotranspiration) and soil (carbon content and water retention capacity) on the carbon budget of agricultural land. The changes in quality of crop residues and organic material as a result of changes in CO2 concentration and changed management were not considered in this model. The model was parameterized for several arable crops and grassland. Data from agricultural, meteorological, soil, and land use databases were input to the model, and the model was used to evaluate the effects of different carbon dioxide mitigation measures on soil organic carbon in agricultural areas in Europe. Average carbon fluxes under the business as usual scenario in the 2008,2012 commitment period were estimated at 0.52 tC ha,1 y,1 in grassland and ,0.84 tC ha,1 y,1 in arable land. Conversion of arable land to grassland yielded a flux of 1.44 tC ha,1 y,1. Farm management related activities aiming at carbon sequestration ranged from 0.15 tC ha,1 y,1 for the incorporating of straw to 1.50 tC ha,1 y,1 for the application of farmyard manure. Reduced tillage yields a positive flux of 0.25 tC ha,1 y,1. The indirect effect associated with climate was an order of magnitude lower. A temperature rise of 1 °C resulted in a ,0.05 tC ha,1 y,1 change whereas the rising CO2 concentrations gave a 0.01 tC ha,1 y,1 change. Estimates are rendered on a 0.5 × 0.5° grid for the commitment period 2008,2012. The study reveals considerable regional differences in the effectiveness of carbon dioxide abatement measures, resulting from the interaction between crop, soil and climate. Besides, there are substantial differences between the spatial patterns of carbon fluxes that result from different measures. [source]


    The conservation management of upland hay meadows in Britain: a review

    GRASS & FORAGE SCIENCE, Issue 4 2005
    R. G. Jefferson
    Abstract Upland hay meadows conforming to MG3 in the National Vegetation Classification of the UK are a rare habitat in Britain and are largely confined to upland valleys in northern England. Agricultural intensification, particularly ploughing and reseeding and a shift from hay-making to silage production over the last 50 years, has resulted in large losses of species-rich upland hay meadows. Remaining species-rich meadows have been the focus of much nature conservation effort resulting in many of the species-rich sites being protected by statutory designations or through voluntary agri-environment scheme agreements. Research and monitoring has tended to confirm that species richness is maximized by management involving spring and autumn grazing, a mid-July hay cut, no inorganic fertilizer and possibly low levels of farmyard manure. Deviations from this regime result in a loss of species richness. Restoration of semi-improved grassland to swards resembling species-rich MG3 also requires a similar regime but is also dependent on the introduction of seed of appropriate species. The role of Rhinanthus minor as a tool for manipulating meadow biodiversity during restoration management is discussed. Suggestions for future research are outlined. [source]


    The response of manured forage maize to starter phosphorus fertilizer on chalkland soils in southern England

    GRASS & FORAGE SCIENCE, Issue 2 2000
    Withers
    The impact of various starter phosphorus (P) fertilizers on the growth, nutrient uptake and dry-matter (DM) yield of forage maize (Zea mais) continuously cropped on the same area and receiving annual, pre-sowing, broadcast dressings of liquid and semi-solid dairy manures was investigated in two replicated plot experiments and in whole-field comparisons in the UK. In Experiment 1 on a shallow calcareous soil (27 mg l,1 Olsen-extractable P) in 1996, placement of starter P fertilizer (17 or 32 kg ha,1) did not benefit crop growth or significantly (P > 0·05) increase DM yield at harvest. However, in Experiment 2 on a deeper non-calcareous soil (41 mg l,1 Olsen-extractable P) in 1997, placement of starter P fertilizer (19 or 41 kg P ha,1), either applied alone or in combination with starter N fertilizer (10 or 25 kg N ha,1), significantly increased early crop growth (P < 0·01) and DM yield at harvest by 1·3 t ha,1 (P < 0·05) compared with a control without starter N or P fertilizer. Placement of starter N fertilizer alone did not benefit early crop growth, but gave similar yields as P, or N and P, fertilizer treatments at harvest. Large treatment differences in N and P uptake by mid-August had disappeared by harvest. In field comparisons over the 4-year period 1994,97, the addition of starter P fertilizer increased field cumulative surplus P by over 70%, but without significantly (P > 0·05) increasing DM yield, or nutrient (N and P) uptake, compared with fields that did not receive starter P fertilizer. The results emphasized the extremely low efficiency with which starter P fertilizers are utilized by forage maize and the need to budget manure and fertilizer P inputs more precisely in order to avoid excessive soil P accumulation and the consequent increased risk of P transfer to water causing eutrophication. [source]


    Use of liquid chromatography,tandem mass spectrometry for quantitative analysis of clopyralid in compost and forage

    GRASSLAND SCIENCE, Issue 3 2009
    Ryuichi Uegaki
    Abstract In this study, we first developed a technique to quantify clopyralid using liquid chromatography,tandem mass spectrometry (LC/MS/MS) and tested its performance for compost and corn plant samples. Then, we measured the uptake of clopyralid by forage corn grown on two types of soil mixed with clopyralid-contaminated compost, in order to investigate the potential of ingestion of compost clopyralid by animals through forage crops. Because of the high recovery ratios (80,82% for compost and 98% for corn), sufficient theoretical quantification limits (5.0 and 1.7 ,g kg,1 fresh matter, respectively) and close agreement with the bioassay method (73 ,g kg,1 for LC/MS/MS and 80 ,g kg,1 for bioassay), the LC/MS/MS method was considered to be of potential value for determining clopyralid in compost and plant materials. Corn plants took up clopyralid from soil (compost), with the amount and rate of uptake varying with soil types and application of activated carbon to soil. There is a need for quantifying clopyralid uptake by a range of forage crops under a range of cultivation conditions (e.g. climate, soil, management) to estimate clopyralid fluxes through the manure,forage,animal,manure pathway. [source]