Home About us Contact | |||
Management Units (management + unit)
Selected AbstractsThe taxonomic status, distribution and conservation of the lowland anoa Bubalus depressicornis and mountain anoa Bubalus quarlesiMAMMAL REVIEW, Issue 1 2005J. A. BURTON ABSTRACT 1.,The anoas are two species of dwarf buffalo, the lowland anoa Bubalus depressicornis and mountain anoa Bubalus quarlesi that are endemic to the island of Sulawesi, Indonesia. The classification of the subgenus Anoa within Bubalus is upheld by assessment of recent genetic and morphological research. The classification of anoas into two species is still debated, but with the absence of significant opposing evidence, this position is adopted here. 2.,Information about the distribution of the two species is presented that adds to but largely supports existing reports. However, it is still uncertain whether the two putative species are sympatric or parapatric in their distribution. A review of anoa distribution from historical reports and recent field data (1990s to 2002) highlights their decline throughout Sulawesi, especially in the southern and north-eastern peninsulas. The decline has been attributed to local hunting for meat and habitat loss. Most populations are rapidly becoming fragmented, suggesting that the conservation of viable populations may eventually require management of metapopulations. 3.,There is an urgent requirement for conservation efforts to: (i) protect anoas from hunting; (ii) prevent habitat loss in key sites; (iii) complete genetic studies to better determine the number of anoa taxa and Management Units and assess their distribution; and (iv) determine the status of the remaining anoa populations. [source] A population genetic comparison of argali sheep (Ovis ammon) in Mongolia using the ND5 gene of mitochondrial DNA; implications for conservationMOLECULAR ECOLOGY, Issue 5 2004T. Tserenbataa Abstract We sequenced 556 bp of the mitochondrial ND5 gene to infer aspects of population structure and to test subspecific designations of argali sheep (Ovis ammon) in Mongolia. Analysis of molecular variance (amova) revealed greater variation within than among putative subspecies and populations, suggesting high levels female-mediated gene flow. Compared with bighorn sheep (O. canadensis) in North America, substantially less differentiation in mitochondrial DNA was found among argali populations over 1200 km than was found among bighorn populations over 250 km. This result is consistent with differences in argali and bighorn life history traits. Argali run for long distances across open terrain in the presence of a threat rather than running up into steep escape terrain like bighorn sheep do. Our results suggest recognizing only one Evolutionary Significant Unit (subspecies) of argali in Mongolia, but they may support recognizing two Management Units, because two regions do exhibit slightly different haplotype frequencies at the ND5 gene of mtDNA. [source] Genetic population structure of marine fish: mismatch between biological and fisheries management unitsFISH AND FISHERIES, Issue 4 2009Henning Reiss Abstract An essential prerequisite of a sustainable fisheries management is the matching of biologically relevant processes and management action. In fisheries management and assessment, fish stocks are the fundamental biological unit, but the reasoning for the operational management unit is often indistinct and mismatches between the biology and the management action frequently occur. Despite the plethora of population genetic data on marine fishes, to date little or no use is made of the information, despite the fact that the detection of genetic differentiation may indicate reproductively distinct populations. Here, we discuss key aspects of genetic population differentiation in the context of their importance for fisheries management. Furthermore, we evaluate the population structure of all 32 managed marine fish species in the north-east Atlantic and relate this structure to current management units and practice. Although a large number of studies on genetic population structure have been published in the last decades, data are still rare for most exploited species. The mismatch between genetic population structure and the current management units found for six species (Gadus morhua, Melanogrammus aeglefinus, Merlangius merlangus, Micromesistius poutassou, Merluccius merluccius and Clupea harengus), emphasizes the need for a revision of these units and questions the appropriateness of current management measures. The implementation of complex and dynamic population structures into novel and less static management procedures should be a primary task for future fisheries management approaches. [source] Architecture for dynamic and fair distribution of bandwidthINTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, Issue 5 2006Vasil Hnatyshin The problem of fair distribution of available bandwidth among traffic flows or aggregates remains an essential issue in computer networks. This paper introduces a novel approach, called the Exact Bandwidth Distribution Scheme (X-BDS), for dynamic and fair distribution of available bandwidth among individual flows. In this approach, the edge routers keep per-flow information, while the core routers maintain the aggregate flow requirements. The X-BDS approach employs a distributed message exchange protocol for providing network feedback and for distributing aggregate flow requirements among the nodes in the network. Based on the obtained feedback, the edge routers employ the X-BDS resource management unit to dynamically distribute available bandwidth among individual flows. The X-BDS admission control and resource management units are responsible for fair resource allocation that supports minimum bandwidth guarantees of individual flows. This paper evaluates the Bandwidth Distribution Scheme through simulation and shows that the X-BDS is capable of supporting per-flow bandwidth guarantees in a dynamically changing network environment. Copyright © 2006 John Wiley & Sons, Ltd. [source] Evaluation of a falls prevention programme in an acute tertiary care hospitalJOURNAL OF CLINICAL NURSING, Issue 2 2007M Hth Sci, PG Dip Clin Epi, Teresa A Williams BN Aims and objectives., To evaluate a systematic, coordinated approach to limit the severity and minimize the number of falls in an acute care hospital. Background., Patient falls are a significant cause of preventable injury and death, particularly in older patients. Best practice principles mandate that hospitals identify those patients at risk of falling and implement interventions to prevent or minimize them. Methods., A before and after design was used for the study. All patients admitted to three medical wards and a geriatric evaluation management unit were enrolled over a six-month period. Patients' risk of falling was assessed using a falls risk assessment tool and appropriate interventions implemented using a falls care plan. Data related to the number and severity of falls were obtained from the Australian Incident Monitoring System database used at the study site. Results., In this study, 1357 patient admissions were included. According to their risk category, 37% of patients (n = 496) were grouped as low risk (score = 1,10), 58% (n = 774) medium risk (score = 11,20) and 5% (n = 63) high risk (score = 21,33) for falls. The incidence of falls (per average occupied bed day) was eight per 1000 bed days for the study period. Compared with the same months in 2002/2003, there was a significant reduction in falls from 0·95 to 0·80 (95% CI for the difference ,0·14 to ,0·16, P < 0·001). Conclusion., We evaluated a systematic, coordinated approach to falls management that included a falls risk assessment tool and falls care plan in the acute care setting. Although a significant reduction in falls was found in this study, it could not be attributed to any specific interventions. Relevance to clinical practice., Preventing falls where possible is essential. Assessment of risk and use of appropriate interventions can reduce the incidence of falls. [source] Conservation implications of complex population structure: lessons from the loggerhead turtle (Caretta caretta)MOLECULAR ECOLOGY, Issue 8 2005B. W. BOWEN Abstract Complex population structure can result from either sex-biased gene flow or population overlap during migrations. Loggerhead turtles (Caretta caretta) have both traits, providing an instructive case history for wildlife management. Based on surveys of maternally inherited mtDNA, pelagic post-hatchlings show no population structure across the northern Atlantic (,ST < 0.001, P = 0.919), subadults in coastal habitat show low structure among locations (,ST = 0.01, P < 0.005), and nesting colonies along the southeastern coast of the United States have strong structure (,ST = 0.42, P < 0.001). Thus the level of population structure increases through progressive life history stages. In contrast, a survey of biparentally inherited microsatellite DNA shows no significant population structure: RST < 0.001; FST = 0.002 (P > 0.05) across the same nesting colonies. These results indicate that loggerhead females home faithfully to their natal nesting colony, but males provide an avenue of gene flow between regional nesting colonies, probably via opportunistic mating in migratory corridors. As a result, all breeding populations in the southeastern United States have similar levels of microsatellite diversity (HE = 0.70,0.89), whereas mtDNA haplotype diversity varies dramatically (h = 0.00,0.66). Under a conventional interpretation of the nuclear DNA data, the entire southeastern United States would be regarded as a single management unit, yet the mtDNA data indicate multiple isolated populations. This complex population structure mandates a different management strategy at each life stage. Perturbations to pelagic juveniles will have a diffuse impact on Atlantic nesting colonies, mortality of subadults will have a more focused impact on nearby breeding populations, and disturbances to adults will have pinpoint impact on corresponding breeding populations. These findings demonstrate that surveys of multiple life stages are desirable to resolve management units in migratory marine species. [source] Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variationMOLECULAR ECOLOGY, Issue 4 2001T. L. King Abstract Atlantic salmon (n = 1682) from 27 anadromous river populations and two nonanadromous strains ranging from south-central Maine, USA to northern Spain were genotyped at 12 microsatellite DNA loci. This suite of moderate to highly polymorphic loci revealed 266 alleles (5,37/locus) range-wide. Statistically significant allelic and genotypic heterogeneity was observed across loci between all but one pairwise comparison. Significant isolation by distance was found within and between North American and European populations, indicating reduced gene flow at all geographical scales examined. North American Atlantic salmon populations had fewer alleles, fewer unique alleles (though at a higher frequency) and a shallower phylogenetic structure than European Atlantic salmon populations. We believe these characteristics result from the differing glacial histories of the two continents, as the North American range of Atlantic salmon was glaciated more recently and more uniformly than the European range. Genotypic assignment tests based on maximum-likelihood provided 100% correct classification to continent of origin and averaged nearly 83% correct classification to province of origin across continents. This multilocus method, which may be enhanced with additional polymorphic loci, provides fishery managers the highest degree of correct assignment to management unit of any technique currently available. [source] Microsatellite DNA markers for population-genetic studies of blue mackerel (Scomber australasicus) and cross-specific amplification in S. japonicusMOLECULAR ECOLOGY RESOURCES, Issue 3 2009C. Y. TANG Abstract Blue mackerel (Scomber australasicus) is targeted by large-scale purse-seiners in the western North Pacific, and its stock structure is still contentious. Herein, we described 10 polymorphic microsatellite loci for blue mackerel. The number of alleles among 32 individuals surveyed ranged from five to 27 (average of 16.2 alleles per locus). Departures from Hardy,Weinberg expectation were observed at two loci. Cross-specific amplification in the congener, S. japonicus, was successful, except for one locus, revealed to be diagnostic for these congeners. These microsatellite loci will be useful tools to address queries in population genetic structure, fishery management unit and taxonomic species status in the genus Scomber. [source] Genetic population structure of marine fish: mismatch between biological and fisheries management unitsFISH AND FISHERIES, Issue 4 2009Henning Reiss Abstract An essential prerequisite of a sustainable fisheries management is the matching of biologically relevant processes and management action. In fisheries management and assessment, fish stocks are the fundamental biological unit, but the reasoning for the operational management unit is often indistinct and mismatches between the biology and the management action frequently occur. Despite the plethora of population genetic data on marine fishes, to date little or no use is made of the information, despite the fact that the detection of genetic differentiation may indicate reproductively distinct populations. Here, we discuss key aspects of genetic population differentiation in the context of their importance for fisheries management. Furthermore, we evaluate the population structure of all 32 managed marine fish species in the north-east Atlantic and relate this structure to current management units and practice. Although a large number of studies on genetic population structure have been published in the last decades, data are still rare for most exploited species. The mismatch between genetic population structure and the current management units found for six species (Gadus morhua, Melanogrammus aeglefinus, Merlangius merlangus, Micromesistius poutassou, Merluccius merluccius and Clupea harengus), emphasizes the need for a revision of these units and questions the appropriateness of current management measures. The implementation of complex and dynamic population structures into novel and less static management procedures should be a primary task for future fisheries management approaches. [source] The development of the Finnish inland fisheries systemFISHERIES MANAGEMENT & ECOLOGY, Issue 4-5 2001M. Sipponen The efficiency of Finnish inland fisheries administration has improved during the past 15 years because of changes in fisheries legislation. The establishment of regional management units particularly has improved the practice of co-management, which has allowed the participation of many relevant interest groups in the decision-making process. The long-term private market equilibrium supply for recreational fishing with active types of gear accounted for 50% of the Finnish lake surface area. Presently the public sector has become involved in the supply of recreational fishing licences. The improvement in the system owes much to political initiatives. As regards commercial fishing, state-ownership of fishing grounds is a channel for recruitment into the occupation. Private ownership has led to a suboptimal allocation of fisheries resources, particularly in the commercial branch of the industry. However, by giving priority to social instead of economic goals the statutory fishery associations will help to maintain social and community values, which are locally important. [source] Architecture for dynamic and fair distribution of bandwidthINTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, Issue 5 2006Vasil Hnatyshin The problem of fair distribution of available bandwidth among traffic flows or aggregates remains an essential issue in computer networks. This paper introduces a novel approach, called the Exact Bandwidth Distribution Scheme (X-BDS), for dynamic and fair distribution of available bandwidth among individual flows. In this approach, the edge routers keep per-flow information, while the core routers maintain the aggregate flow requirements. The X-BDS approach employs a distributed message exchange protocol for providing network feedback and for distributing aggregate flow requirements among the nodes in the network. Based on the obtained feedback, the edge routers employ the X-BDS resource management unit to dynamically distribute available bandwidth among individual flows. The X-BDS admission control and resource management units are responsible for fair resource allocation that supports minimum bandwidth guarantees of individual flows. This paper evaluates the Bandwidth Distribution Scheme through simulation and shows that the X-BDS is capable of supporting per-flow bandwidth guarantees in a dynamically changing network environment. Copyright © 2006 John Wiley & Sons, Ltd. [source] Spatial patterns of kangaroo density across the South Australian pastoral zone over 26 years: aggregation during drought and suggestions of long distance movementJOURNAL OF APPLIED ECOLOGY, Issue 5 2007ANTHONY R. POPLE Summary 1Wildlife surveys usually focus on estimating population size, and management actions such as commercial harvesting, culling and poison baiting are referenced commonly to population size alone, without taking into account the way in which those animals are distributed. This paper outlines how point-based aerial survey data can be converted to continuous density surfaces using spatial analysis techniques. Using this approach, we describe and explore the spatial patterns of density of two species of kangaroos in an area exceeding 200 000 km2 in South Australia over a 26-year period. 2Densities of red and western grey kangaroos were estimated in 2 km2 segments along aerial survey transect lines, yielding point density estimates. Universal kriging provided an unbiased interpolation of these data using the spatial autocorrelation structure described by the semi-variogram. The Getis statistic identified clusters of high and low kangaroo density. 3Considerable year-to-year variation in the spatial patterns of kangaroo density was observed. In many cases, annual rates of increase over large areas were too high to be explained by vital rates alone, implying immigration from surrounding areas. These large shifts in distribution were occasionally to areas that had received better rainfall than the surrounding areas. For both species, there was no obvious local spatial autocorrelation pattern or clustering of kangaroo density beyond that described by average density and the present set of management regions, suggesting the latter are appropriate divisions for harvest management. 4Data for both species fitted the power law relationship extremely well. During dry times, red kangaroos, but not western grey kangaroos, were more aggregated, supporting past ground observations at a fine spatial scale. 5Synthesis and applications. Kriged density surfaces enable estimation of kangaroo density on individual properties, which are the management units at which harvest quotas or culling approvals are allocated. These estimates will be marked improvements over systematic sampling estimates when sampling intensity is low. Predictions of shifts in kangaroo distribution using rainfall or satellite imagery will allow more accurate allocation of harvest quotas. Similarly, predictions of more even kangaroo dispersion following high rainfall will allow managers to anticipate downturns in harvest rate. [source] Multispecies conservation planning: identifying landscapes for the conservation of viable populations using local and continental species prioritiesJOURNAL OF APPLIED ECOLOGY, Issue 2 2007REGAN EARLY Summary 1Faced with unpredictable environmental change, conservation managers face the dual challenges of protecting species throughout their ranges and protecting areas where populations are most likely to persist in the long term. The former can be achieved by protecting locally rare species, to the potential detriment of protecting species where they are least endangered and most likely to survive in the long term. 2Using British butterflies as a model system, we compared the efficacy of two methods of identifying persistent areas of species' distributions: a single-species approach and a new multispecies prioritization tool called ZONATION. This tool identifies priority areas using population dynamic principles (prioritizing areas that contain concentrations of populations of each species) and the reserve selection principle of complementarity. 3ZONATION was generally able to identify the best landscapes for target (i.e. conservation priority) species. This ability was improved by assigning higher numerical weights to target species and implementing a clustering procedure to identify coherent biological management units. 4Weighting British species according to their European rather than UK status substantially increased the protection offered to species at risk throughout Europe. The representation of species that are rare or at risk in the UK, but not in Europe, was not greatly reduced when European weights were used, although some species of UK-only concern were no longer assigned protection inside their best landscapes. The analysis highlights potential consequences of implementing parochial vs. wider-world priorities within a region. 5Synthesis and applications. Wherever possible, reserve planning should incorporate an understanding of population processes to identify areas that are likely to support persistent populations. While the multispecies prioritization tool ZONATION compared favourably to the selection of ,best' areas for individual species, a user-defined input of species weights was required to produce satisfactory solutions for long-term conservation. Weighting species can allow international conservation priorities to be incorporated into regional action plans but the potential consequences of any putative solution should always be assessed to ensure that no individual species of local concern will be threatened. [source] Effects of intensive harvesting on moose reproductionJOURNAL OF APPLIED ECOLOGY, Issue 3 2000Catherine Laurian Summary 1.,It has been hypothesized that a balanced adult sex ratio is necessary for the full participation of ungulate females in reproduction and therefore high productivity. We tested this general hypothesis by combining two complementary approaches. 2.,First, using telemetry (n = 60) and annual aerial censuses between 1995 and 1998, we compared two moose Alces alces populations in Quebec, Canada, one non-harvested and the other subject to intensive sport harvesting from the end of September to mid-October. We tested the following predictions for the harvested population: (i) females increase movements and home ranges during the mating period; (ii) the mating system is modified, with the appearance of groups of one male and many females; (iii) subadult males participate in reproduction; (iv) the mating period extends over two to three oestrus cycles; (v) the calving period extends over several months; and (vi) productivity declines. 3.,Daily movements and home range sizes during the mating period did not differ between harvested and non-harvested populations. Most groups observed were male,female pairs. Subadult males (1·5,2·5 years old) were only observed with females in the harvested population. Mating and calving periods did not differ between populations. The proportion of females that gave birth and the number of calves produced were also comparable in the two populations. 4.,Secondly, we also assessed the existence of a relationship between population productivity and percentage of males in various management units of the province of Quebec that were characterized by a wide range in sex ratios. Contrary to prediction (vi), the number of calves per 100 adult females was not related to the percentage of adult males in the population. 5.,The participation of young adult males (subadults) in reproduction in our harvested population may have compensated for the lower percentage of adult males, and thus productivity was unaffected. We therefore reject the hypothesis that intensive harvesting, at least at the level we observed, affects reproduction and population productivity. 6.,As there are some uncertainties regarding the long-term effects of high hunting pressure, however, managers should favour sex ratios close to levels observed in non-harvested populations. [source] Intraspecific genetic analysis of the summer tanager Piranga rubra: implications for species limits and conservationJOURNAL OF AVIAN BIOLOGY, Issue 1 2007Tiffany M. Shepherd The summer tanager Piranga rubra is a Neotropical migrant that has experienced noted declines in the southwestern United States caused by extensive habitat loss of native riparian woodlands. This species is composed of two morphologically and behaviorally distinct taxa that traditionally have been recognized as subspecies, each occupying unique habitats in the southern part of North America. Genetic analyses of intraspecific variation are important in studies of threatened or endangered species because they can indicate whether smaller management units exist below the species level and they also provide estimates of within population variability. Using a mitochondrial DNA marker, the intraspecific genetic variation of this species is explored to determine whether the morphologically and behaviorally distinct subspecies are also genetically unique. By using traditional phylogenetic methods and building haplotype networks, results from this study indicate that the subspecies represent two phylogenetic species and should be managed as separate units. In addition, the level of gene flow among geographically isolated populations of the western subspecies is explored using Nested Clade Phylogeographic Analysis and population genetic tests. These analyses show that populations are genetically diverse and that haplotypes are shared across populations. Newly colonized populations are as diverse as older populations. This suggests that as habitat degrades in traditional breeding areas of the summer tanager, if suitable habitat elsewhere becomes available for new populations, these new colonies should be genetically diverse. [source] Comparative studies of quantitative trait and neutral marker divergence: a meta-analysisJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2008T. LEINONEN Abstract Comparative studies of quantitative genetic and neutral marker differentiation have provided means for assessing the relative roles of natural selection and random genetic drift in explaining among-population divergence. This information can be useful for our fundamental understanding of population differentiation, as well as for identifying management units in conservation biology. Here, we provide comprehensive review and meta-analysis of the empirical studies that have compared quantitative genetic (QST) and neutral marker (FST) differentiation among natural populations. Our analyses confirm the conclusion from previous reviews , based on ca. 100% more data , that the QST values are on average higher than FST values [mean difference 0.12 (SD 0.27)] suggesting a predominant role for natural selection as a cause of differentiation in quantitative traits. However, although the influence of trait (life history, morphological and behavioural) and marker type (e.g. microsatellites and allozymes) on the variance of the difference between QST and FST is small, there is much heterogeneity in the data attributable to variation between specific studies and traits. The latter is understandable as there is no reason to expect that natural selection would be acting in similar fashion on all populations and traits (except for fitness itself). We also found evidence to suggest that QST and FST values across studies are positively correlated, but the significance of this finding remains unclear. We discuss these results in the context of utility of the QST,FST comparisons as a tool for inferring natural selection, as well as associated methodological and interpretational problems involved with individual and meta-analytic studies. [source] Morphometric convergence and molecular divergence: the taxonomic status and evolutionary history of Gymnura crebripunctata and Gymnura marmorata in the eastern Pacific OceanJOURNAL OF FISH BIOLOGY, Issue 4 2009W.D. Smith To clarify the taxonomic status of Gymnura crebripunctata and Gymnura marmorata, the extent of morphological and nucleotide variation between these nominal species was examined using multivariate morphological and mitochondrial DNA comparisons of the same characters with congeneric species. Discriminant analysis of 21 morphometric variables from four species (G. crebripunctata, G. marmorata, Gymnura micrura and Gymnura poecilura) successfully distinguished species groupings. Classification success of eastern Pacific species improved further when specimens were grouped by species and sex. Discriminant analysis of size-corrected data generated species assignments that were consistently accurate in separating the two species (100% jackknifed assignment success). Nasal curtain length was identified as the character which contributed the most to discrimination of the two species. Sexual dimorphism was evident in several characters that have previously been relied upon to distinguish G. crebripunctata from G. marmorata. A previously unreported feature, the absence of a tail spine in G. crebripunctata, provides an improved method of field identification between these species. Phylogenetic and genetic distance analyses based on 698 base pairs of the mitochondrial cytochrome b gene indicate that G. crebripunctata and G. marmorata form highly divergent lineages, supporting their validity as distinct species. The closely related batoid Aetoplatea zonura clustered within the Gymnura clade, indicating that it may not represent a valid genus. Strong population structuring (overall ,ST = 0·81,P < 0·01) was evident between G. marmorata from the Pacific coast of the Baja California peninsula and the Gulf of California, supporting the designation of distinct management units in these regions. [source] Conservation goals and fisheries management units for Atlantic salmon in the Baltic Sea areaJOURNAL OF FISH BIOLOGY, Issue 2001M-L. Koljonen The effective application of genetic information in fisheries management strategies implies political goal setting taking both conservation and fisheries management into account. The concept of sustainable use as set out by the Convention on Biological Diversity offers a valuable starting point in this respect, since the criterion for it is defined as the maintenance of genetic diversity within each species. However, strategic decisions are also needed on the practical level, where the actual genetic information can be taken into account. Genetic factors, such as glacial differentiation, the postglacial genetic structure of populations, gene flow levels and the probability of the existence of adaptive differences, have an effect on the formation of conservation and management units and on the long-term strategy for the sustainable use of aspecies. The Atlantic salmon (Salmo salar) in the Baltic Sea area is treated here as an example of a complicated management problem with a highly hierarchical genetic structure associated with marked loss of naturally reproductive stocks, extensive hatchery production and an effective international offshore fishery. The implications of genetic factors for the conservation and management strategy of the Baltic salmon is discussed in the light of the goals set by the Convention on Biological Diversity, the Straddling Fish Stocks and Highly Migratory Fish Stocks Agreement, the Habitats Directive of the European Union and the International Baltic Sea Fishery Commission. [source] Phenotypical characterization of indigenous freshwater crayfish populationsJOURNAL OF ZOOLOGY, Issue 2 2007D. Sint Abstract The morphology of an animal is known to reflect both genetic variation and adaptation to the environment. Thus, phenotypic criteria have been used to characterize indigenous crayfish populations. Twenty-one morphometric parameters were measured on crayfish from 25 waterbodies in the Austrian and Italian parts of Tyrol. They were analysed with hierarchical cluster analysis to obtain the population structure based on morphological similarity between and within the freshwater crayfish species Astacus astacus (noble crayfish), Austropotamobius torrentium (stone crayfish) and Austropotamobius pallipes (white-clawed crayfish). Furthermore, a stepwise discriminant analysis was applied to the morphometric data to test their differentiating power between populations. Both analyses resulted in a clear differentiation of species and populations, and reflected geographic separations. Thus, the developed morphometric methods were shown to be applicable to characterize the phenotype in freshwater crayfish and seem appropriate to be used for stock identification and the effective characterization of management units in decapod crustaceans. [source] Population genetics of Galápagos land iguana (genus Conolophus) remnant populationsMOLECULAR ECOLOGY, Issue 23 2008ATHANASIA C. TZIKA Abstract The Galápagos land iguanas (genus Conolophus) have faced significant anthropogenic disturbances since the 17th century, leading to severe reduction of some populations and the extinction of others. Conservation activities, including the repatriation of captive-bred animals to depleted areas, have been ongoing since the late 1970s, but genetic information has not been extensively incorporated. Here we use nine species-specific microsatellite loci of 703 land iguanas from the six islands where the species occur today to characterize the genetic diversity within, and the levels of genetic differentiation among, current populations as well as test previous hypotheses about accidental translocations associated with early conservation efforts. Our analyses indicate that (i) five populations of iguanas represent distinct conservation units (one of them being the recently discovered rosada form) and could warrant species status, (ii) some individuals from North Seymour previously assumed to be from the natural Baltra population appear related to both Isabela and Santa Cruz populations, and (iii) the five different management units exhibit considerably different levels of intrapopulation genetic diversity, with the Plaza Sur and Santa Fe populations particularly low. Although the initial captive breeding programmes, coupled with intensive efforts to eradicate introduced species, saved several land iguana populations from extinction, our molecular results provide objective data for improving continuing in situ species survival plans and population management for this spectacular and emblematic reptile. [source] Conservation implications of complex population structure: lessons from the loggerhead turtle (Caretta caretta)MOLECULAR ECOLOGY, Issue 8 2005B. W. BOWEN Abstract Complex population structure can result from either sex-biased gene flow or population overlap during migrations. Loggerhead turtles (Caretta caretta) have both traits, providing an instructive case history for wildlife management. Based on surveys of maternally inherited mtDNA, pelagic post-hatchlings show no population structure across the northern Atlantic (,ST < 0.001, P = 0.919), subadults in coastal habitat show low structure among locations (,ST = 0.01, P < 0.005), and nesting colonies along the southeastern coast of the United States have strong structure (,ST = 0.42, P < 0.001). Thus the level of population structure increases through progressive life history stages. In contrast, a survey of biparentally inherited microsatellite DNA shows no significant population structure: RST < 0.001; FST = 0.002 (P > 0.05) across the same nesting colonies. These results indicate that loggerhead females home faithfully to their natal nesting colony, but males provide an avenue of gene flow between regional nesting colonies, probably via opportunistic mating in migratory corridors. As a result, all breeding populations in the southeastern United States have similar levels of microsatellite diversity (HE = 0.70,0.89), whereas mtDNA haplotype diversity varies dramatically (h = 0.00,0.66). Under a conventional interpretation of the nuclear DNA data, the entire southeastern United States would be regarded as a single management unit, yet the mtDNA data indicate multiple isolated populations. This complex population structure mandates a different management strategy at each life stage. Perturbations to pelagic juveniles will have a diffuse impact on Atlantic nesting colonies, mortality of subadults will have a more focused impact on nearby breeding populations, and disturbances to adults will have pinpoint impact on corresponding breeding populations. These findings demonstrate that surveys of multiple life stages are desirable to resolve management units in migratory marine species. [source] Population genetics of the endangered Knysna seahorse, Hippocampus capensisMOLECULAR ECOLOGY, Issue 7 2003P. R. Teske Abstract The evolutionary history of the endangered Knysna seahorse, Hippocampus capensis, and the extent of gene flow among its three known populations, were investigated using 138 mitochondrial DNA control region sequences. Similarly high levels of genetic diversity were found in two of the populations (Knysna and Keurbooms Estuaries), whereas diversity in the third population (Swartvlei Estuary) was lower. Although most haplotypes are shared between at least two populations, based on the haplotype frequency distributions the three assemblages constitute distinct management units. The extant population structure of H. capensis suggests that the Knysna seahorse originated in the large Knysna Estuary. The presence of seahorses in the two smaller estuaries is either the result of a vicariance event at the beginning of the present interglacial period, colonization of the estuaries via the sea, or a combination of the two. [source] Phylogeography and genetic structure of northern populations of the yellow warbler (Dendroica petechia)MOLECULAR ECOLOGY, Issue 6 2000Emmanuel Milot Abstract Phylogeographic patterns of intraspecific variation can provide insights into the population-level processes responsible for speciation and yield information useful for conservation purposes. To examine phylogeography and population structure in a migratory passerine bird at both continental and regional geographical scales, we analysed 344 bp of mitochondrial DNA (mtDNA) control region sequence from 155 yellow warblers (Dendroica petechia) collected from seven locations across Canada and from Alaska. There is a major subdivision between eastern (Manitoba to Newfoundland) and western (Alaska and British Columbia) populations which appears to have developed during the recent Pleistocene. Some localities within these two regions also differ significantly in their genetic composition, suggesting further subdivision on a regional geographical scale. Eastern and western birds form distinct phylogeographic entities and the clustering of all western haplotypes with two eastern haplotypes suggests that the western haplotypes may be derived from an eastern lineage. Analyses based on coalescent models support this explanation for the origin of western haplotypes. These results are consistent with important features of Mengel's model of warbler diversification. From a conservation perspective they also suggest that individual populations of migrant birds may form demographically isolated management units on a smaller scale than previously appreciated. [source] Conservation genetics of a critically endangered Iberian minnow: evidence of population decline and extirpationsANIMAL CONSERVATION, Issue 2 2010V. Sousa Abstract The endangered minnow Iberochondrostoma almacai is an endemic Iberian cyprinid with a restricted and fragmented distribution. Here, we describe the genetic structure of the species and infer its demographic history from six nuclear-encoded microsatellite loci and mitochondrial cytochrome b sequences. Genetic diversity was low (microsatellite He<0.45; mtDNA ,<0.0015), and both markers resolved two groups: one from the northern Mira drainage and one from the Arade and Bensafrim drainages. The relatively low differentiation between these groups (0.09 Source populations in carnivore management: cougar demography and emigration in a lightly hunted populationANIMAL CONSERVATION, Issue 4 2009H. S. Cooley Abstract Wildlife agencies typically attempt to manage carnivore numbers in localized game management units through hunting, and do not always consider the potential influences of immigration and emigration on the outcome of those hunting practices. However, such a closed population structure may not be an appropriate model for management of carnivore populations where immigration and emigration are important population parameters. The closed population hypothesis predicts that high hunting mortality will reduce numbers and densities of carnivores and that low hunting mortality will increase numbers and densities. By contrast, the open population hypothesis predicts that high hunting mortality may not reduce carnivore densities because of compensatory immigration, and low hunting mortality may not result in more carnivores because of compensatory emigration. Previous research supported the open population hypothesis with high immigration rates in a heavily hunted (hunting mortality rate=0.24) cougar population in northern Washington. We test the open population hypothesis and high emigration rates in a lightly hunted (hunting mortality rate=0.11) cougar population in central Washington by monitoring demography from 2002 to 2007. We used a dual sex survival/fecundity Leslie matrix to estimate closed population growth and annual census counts to estimate open population growth. The observed open population growth rate of 0.98 was lower than the closed survival/fecundity growth rates of 1.13 (deterministic) and 1.10 (stochastic), and suggests a 12,15% annual emigration rate. Our data support the open population hypothesis for lightly hunted populations of carnivores. Low hunting mortality did not result in increased numbers and densities of cougars, as commonly believed because of compensatory emigration. [source] Harbour seal movements and haul-out patterns: implications for monitoring and managementAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2009Louise Cunningham Abstract 1.Compliance with conservation legislation requires knowledge on the behaviour, abundance and distribution of protected species. Seal life history is characterized by a combination of marine foraging and a requirement to haul out on a solid substrate for reproduction and moulting. Thus understanding the use of haul out sites, where seals are counted, as well as their at-sea movements is crucial for designing effective monitoring and management plans. 2.This study used satellite transmitters deployed on 24 harbour seals in western Scotland to examine movements and haul-out patterns. 3.The proportion of time harbour seals spent hauled out (daily means of between 11 and 27%) varied spatially, temporally and according to sex. The mean haul-out duration was 5,h, with a maximum of over 24,h. 4.Patterns of movement were observed at two geographical scales; while some seals travelled over 100,km, 50% of trips were within 25,km of a haul-out site. These patterns are important for the identification of a marine component to designated protected areas for the species. 5.On average seals returned to the haul-out sites they last used during 40% of trips, indicating a degree of site fidelity, though there was wide variation between different haul-out sites (range 0% to >75%). 6.Low fidelity haul-out sites could form a network of land-based protected areas, while high fidelity sites might form appropriate management units. Copyright © 2008 John Wiley & Sons, Ltd. [source]
| |