Mantle Source (mantle + source)

Distribution by Scientific Domains


Selected Abstracts


Pre-Variscan metagabbro from NW Sardinia, Italy: evidence of an enriched asthenospheric mantle source for continental alkali basalts

GEOLOGICAL JOURNAL, Issue 2 2003
Marcello Franceschelli
Abstract Small metagabbro bodies are enclosed in the metasedimentary sequence of NW Sardinia. The metagabbros represent the last magmatic episode before the continent,continent collision that built up the Variscan chain of north Sardinia. The metagabbros are composed of variable proportions of plagioclase and pyroxene igneous relics and metamorphic minerals. Major and trace element data, specifically high TiO2 and P2O5 and low K and Rb contents, as well as light rare-earth elements, Nb and Ta enrichment, suggest an alkaline affinity for the gabbro and emplacement in a within-plate tectonic setting. The gabbro was derived from an ocean island alkali basalt-like asthenospheric mantle source enriched with incompatible elements and uncontaminated by crustal or subducted materials. Non-modal modelling indicates a 5,7% partial melting of the asthenospheric mantle. Copyright 2003 John Wiley & Sons, Ltd. [source]


Mantle heterogeneity beneath the Antarctic,Phoenix Ridge off Antarctic Peninsula

ISLAND ARC, Issue 1 2008
Sung-Hi Choi
Abstract We determined the Sr, Nd and Pb isotopic compositions of basalts recovered from the Antarctic,Phoenix Ridge (APR), a fossil spreading center in the Drake Passage, Antarctic Ocean, in order to understand the nature of the subridge mantle source. There are no known hotspots in close proximity to the site. We observe that small-scale isotopic heterogeneity exists at a shallow level in the subaxial mantle of the APR. Enriched (E-type) mid-ocean ridge basalts (MORB) coexist with normal (N-type) MORB in this region. The E-type basalts are: (i) relatively young compared to the N-type samples; (ii) were erupted after the extinction of the APR; and (iii) have been generated by low-degree partial melting of an enriched mantle source. Extinction of the APR likely caused the extent of partial melting in this region to decrease. We interpret that the geochemically enriched materials dispersed in the ambient depleted mantle were the first fraction to melt to form the E-type MORB. [source]


Dashuigou Tellurium Deposit in Sichuan Province, China: S, C, O, and H Isotope Data and Their Implications on Hydrothermal Mineralization

RESOURCE GEOLOGY, Issue 1 2002
Jingwen MAO
Abstract: Dashuigou, a unique tellurium-dominated deposit over the world, is located in the western margin of the Yangtze cra-ton in southwestern China. It is characterized by high-grade tellurium accompanied by bismuth, gold, silver, and sulfur, and occurs in the area of less than one km2. The mineralization is divided into three stages, i.e. (1) tellurium-bearing pyrrhotite,pyrite stage, (2) tetradymite stage, and (3) auriferous quartz veins stage. Tellurium mineralization coexisting with bismuth, silver, selenium, and gold predominantly develops in the stage 2, while the stage 1 is enriched only in sulfur and iron, and the stage 3 is very weakly mineralized with gold. The ,34S values of sulfides in the ore of the deposit vary in a narrow range of ,3.1 - +2.8 per mil with ,3.1 - +2.8 per mil for the stage 1 and ,0.5 - +2.1 for the stage 2, showing the isotopic characteristics of mantle derived sulfur. The ,13C values of vein dolomites vary from ,5.3 to ,7.2 per mil, with ,5.3 - ,6.6 per mil for the stage 1 and ,5.3 - ,7.2 per mil for the stage 2, which are significantly different from those of surrounding Triassic marble with ,13C values of ,0.3 - +2.8 per mil, and show characteristics of mantle derived carbon. The ,18O values of vein dolomites range from +10.2 to +13.1 per mil, which are higher than those of carbonatite, but lower than those of the marble. Their corresponding ,18Owater values are +0.6 - +3.9 per mil, with +2.7 - +3.8 per mil for the stage 1 and +0.6 - +3.9 per mil for the stage 2. The data implies that these vein carbonates were formed by the mixing fluids of magmatic or mantle source with meteoric or formation water. The ,18O values of ore-forming fluids responsible for the formation of vein quartz are estimated to be +3.2 to +6.8, the ,D values of inclusion fluids of the quartz are measured to be ,54 to ,82 per mil. All those stable isotopic data suggest the involvement of the fluids from mantle and/or mantle-derived magmas through fault system in the forming process of the Dashuigou tellurium deposit. [source]


Palladium, Platinum and Gold Concentrations in Fengshan Porphyry Cu,Mo Deposit, Hubei Province, China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2009
Minfang WANG
Abstract: The Fengshan porphyry-skarn copper,molybdenum (Cu,Mo) deposit is located in the south-eastern Hubei Province in east China. Cu,Mo mineralization is hosted in the Fengshan granodiorite porphyry stock that intruded the Triassic Daye Formation carbonate rocks in the early Cretaceous (,140 Ma), as well as the contact zone between granodiorite porphyry stock and carbonate rocks, forming the porphyry-type and skarn-type association. The Fengshan granodiorite stock and the immediate country rocks are strongly fractured and intensely altered by hydrothermal fluids. In addition to intense skarn alteration, the prominent alteration types are potassic, phyllic, and propylitic, whereas argillation is less common. Mineralization occurs as veins, stock works, and disseminations, and the main ore minerals are chalcopyrite, pyrite, molybdenite, bornite, and magnetite. The contents of palladium, platinum and gold (Pd, Pt and Au) are determined in nine samples from fresh and mineralized granodiorite and different types of altered rocks. The results show that the Pd content is systematically higher than Pt, which is typical for porphyry ore deposits worldwide. The Pt content ranges from 0.037 to 1.765 ppb, and the Pd content ranges between 0.165 and 17.979 ppb. Pd and Pt are more concentrated in porphyry mineralization than skarn mineralization, and have negative correlations with Au. The reconnaissance study presented here confirms the existence of Pd and Pt in the Fengshan porphyry-skarn Cu,Mo deposit. When compared with intracontinent and island arc geotectonic settings, the Pd, Pt, and Au contents in the Fengshan porphyry Cu,Mo deposit in the intracontinent is lower than the continental margin types and island are types. A combination of available data indicates that Pd and Pt were derived from oxidized alkaline magmas generated by the partial melting of an enriched mantle source. [source]


A Metallogenic Model of Gold Deposits of the Jiaodong Granite-Greenstone Belt

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2003
DENG Jun
Abstract, An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave, magnetic and gravity fields show that the crust-mantle structure and its coupling mechanism are the fundamental dynamic causes for the exchange and accumulation of materials and energy in the metallogenic system. Considering the evolution history of the structural setting, the tectono-metallogenic dynamics model of the area can be summarized as follows: (1) occurrence of the greenstone belt during the Archean-Proterozoic,the embryonic form of Au-source system; (2) stable tectonic setting in the Paleozoic,an intermittence in gold mineralization; (3) intensive activation and reformation of the greenstone belt in the Mesozoic,tectono-mineralization and tectono-diagensis; (4) posthumous structural activity in the Cenozoic,destruction of orebodies in the later stage. In the middle and late Indosinian, the Tancheng-Lujiang fault zone cut deeply into the upper mantle so that the ore-bearing fluids migrated to higher layers through the crust-mantle interaction, resulting in alteration and mineralization. [source]


A general model for the intrusion and evolution of ,mantle' garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2000
Brueckner
Garnet-bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high-temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60,120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ,mantle' peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ,subduction zone peridotites' intrude during the subsequent subduction of continental crust. Low-pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20,50 km) may be carried to deeper levels within the host slab and undergo high-pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet-bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50,120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 C), subcontinental mantle (,relict peridotites') and seem to require the development of major intra-cratonic faults to effect their intrusion. [source]


Neoproterozoic Mafic Dykes and Basalts in the Southern Margin of Tarim, Northwest China: Age, Geochemistry and Geodynamic Implications

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010
Chuanlin ZHANG
Abstract: Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block, NW China. Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim. Our zircon U-Pb age, in combination with stratigraphic constraint on their emplacement ages, indicates that the mafic dykes were crystallized at ca. 802 Ma, and the basalt, possibly coeval with the ca. 740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle (OIB-like) and lithospheric mantle respectively, with variable assimilation of crustal materials. Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim, we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim, namely the matasomatized subcontinental lithospheric mantle (SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin. A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca. 820,800 Ma and ca. 780,740 Ma, respectively. These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia. [source]


Petrogenesis of Cenozoic Potassic Volcanic Rocks in the Nangqn Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2001
SUN Hongjuan
Abstract The Nangqn basin is one of the Tertiary pull-apart basins situated in the east of the Qiangtang block. Similar to the adjacent Dengqn basin and Baxoi basin, there occurred a series of potassic volcanic and sub-volcanic rocks, ranging from basic, intermediate to intermediate-acid in lithology. Based on the study of petrology, mineralogy and geochemistry, including REEs, trace elements, isotopic elements and chronology, the authors concluded that the Cenozoic potassic volcanic rocks in the Nangqn basin were formed in the post-collisional intraplate tectonic settings. The relations between the basic, intermediate and intermediate-acid rocks are neither differentiation nor evolution, but instead the geochemical variability is mainly attributable to the different partial melting degrees of the mantle sources formed at depths of 50,80 km. The sources of the potassic rocks are enriched metasomatic mantle that has experienced multiple mixing of components mainly derived from the crust. The recycling model can be described as follows: after they had subducted to the mantle wedge, the crust-derived rocks were metasomatized with the mantle materials. In view of the fact that the ratio of crust-derived rocks increases by the age of volcanism, it can be concluded that the sources of the potassic rocks moved upwards progressively with time. The underplating of small scattered magmas upwelling from the asthenosphere may have induced partial melting of the sources of the volcanic rocks in some pull-apart basins in the Hengduanshan area and the intense tectonic movements of large-scale strike-slip belts provided conduits for the ascending melts. [source]