Home About us Contact | |||
Manganese Catalase (manganese + catalase)
Selected AbstractsOuter sphere mutagenesis of Lactobacillus plantarum manganese catalase disrupts the cluster coreFEBS JOURNAL, Issue 6 2003Mechanistic implications X-ray crystallography of the nonheme manganese catalase from Lactobacillus plantarum (LPC) [Barynin, V.V., Whittaker, M.M., Antonyuk, S.V., Lamzin, V.S., Harrison, P.M., Artymiuk, P.J. & Whittaker, J.W. (2001) Structure9, 725,738] has revealed the structure of the dimanganese redox cluster together with its protein environment. The oxidized [Mn(III)Mn(III)] cluster is bridged by two solvent molecules (oxo and hydroxo, respectively) together with a µ1,3 bridging glutamate carboxylate and is embedded in a web of hydrogen bonds involving an outer sphere tyrosine residue (Tyr42). A novel homologous expression system has been developed for production of active recombinant LPC and Tyr42 has been replaced by phenylalanine using site-directed mutagenesis. Spectroscopic and structural studies indicate that disruption of the hydrogen-bonded web significantly perturbs the active site in Y42F LPC, breaking one of the solvent bridges and generating an ,open' form of the dimanganese cluster. Two of the metal ligands adopt alternate conformations in the crystal structure, both conformers having a broken solvent bridge in the dimanganese core. The oxidized Y42F LPC exhibits strong optical absorption characteristic of high spin Mn(III) in low symmetry and lower coordination number. MCD and EPR measurements provide complementary information defining a ferromagnetically coupled electronic ground state for a cluster containing a single solvent bridge, in contrast to the diamagnetic ground state found for the native cluster containing a pair of solvent bridges. Y42F LPC has less than 5% of the catalase activity and much higher Km for H2O2 (,1.4 m) at neutral pH than WT LPC, although the activity is slightly restored at high pH where the cluster is converted to a diamagnetic form. These studies provide new insight into the contribution of the outer sphere tyrosine to the stability of the dimanganese cluster and the role of the solvent bridges in catalysis by dimanganese catalases. [source] Modeling aspects of mechanisms for reactions catalyzed by metalloenzymesJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 14 2001P. E. M. Siegbahn Different models to treat metal-catalyzed enzyme reactions are investigated. The test case chosen is the recently suggested full catalytic cycle of manganese catalase including eight different steps. This cycle contains OO and OH activations, as well as electron transfer steps and redox active reactions, and is therefore believed to be representative of many similar systems. Questions concerning modeling of ligands and the accuracy of the computational model are studied. Imidazole modeling of histidines are compared to ammonia modeling, and formate modeling compared to acetate modeling of glutamates. The basis set size required for the geometry optimization and for the final energy evaluation is also investigated. The adequacy of the model is judged in relation to the inherent accuracy achievable with the hybrid DFT method B3LYP. İ 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1634,1645, 2001 [source] Homo- and heteropolynuclear copper(II) complexes containing a new diimine,dioxime ligand and 1,10-phenanthroline: synthesis, characterization, solvent-extraction studies, catalase-like functions and DNA cleavage abilitiesAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 12 2009Bülent Dede Abstract A series of homo-, heterodinuclear and homotrinuclear copper(II) complexes containing a new Schiff base ligand and 1,10-phenanthroline were synthesized. Based on results of elemental analyses, FTIR, 1H- and 13C-NMR spectra, conductivity measurements and magnetic susceptibility measurements, the complexes had general compositions {[Cu(L)(H2O)M(phen)2](ClO4)2 [M = Cu(II), Mn(II), Co(II)]} and {[Cu3(L)2(H2O)2](ClO4)2}. The metal:L:phen ratio is 2:1:2 for the dinuclear copper(II) complexes and the metal:L ratio was 3:2 for the trinuclear copper(II) complex. The liquid,liquid extraction of various transition metal cations [Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II), Hg(II)] from the aqueous phase to the organic phase was carried out using the diimine,dioxime ligand. It was concluded that the ligand can effectively be used in solvent extraction of copper(II) from the aqueous phase to the organic phase. Furthermore, catalytic activitiy of the complexes for the disproportionation of hydrogen peroxide was also investigated in the presence of imidazole. Dinuclear copper(II),manganese(II) complex has some similarity to manganese catalase in structure and activity. The interaction between these complexes and DNA has also been investigated by agarose gel electrophoresis; we found that the homo- and heterodinuclear copper complexes can cleave supercoiled pBR322 DNA to nicked and linear forms in the presence of H2O2. Copyright İ 2009 John Wiley & Sons, Ltd. [source] |