Major Product Ions (major + product_ion)

Distribution by Scientific Domains


Selected Abstracts


Development of a targeted adductomic method for the determination of polycyclic aromatic hydrocarbon DNA adducts using online column-switching liquid chromatography/tandem mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2010
Rajinder Singh
Human exposure to polycyclic aromatic hydrocarbons (PAHs) from sources such as industrial or urban air pollution, tobacco smoke and cooked food is not confined to a single compound, but instead to mixtures of different PAHs. The interaction of different PAHs may lead to additive, synergistic or antagonistic effects in terms of DNA adduct formation and carcinogenic activity resulting from changes in metabolic activation to reactive intermediates and DNA repair. The development of a targeted DNA adductomic approach using liquid chromatography/tandem mass spectrometry (LC/MS/MS) incorporating software-based peak picking and integration for the assessment of exposure to mixtures of PAHs is described. For method development PAH-modified DNA samples were obtained by reaction of the anti- dihydrodiol epoxide metabolites of benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,l]pyrene (DB[a,l]P) and dibenz[a,h]anthracene with calf thymus DNA in vitro and enzymatically hydrolysed to 2,-deoxynucleosides. Positive LC/electrospray ionisation (ESI)-MS/MS collision-induced dissociation product ion spectra data showed that the majority of adducts displayed a common fragmentation for the neutral loss of 116 u (2,-deoxyribose) resulting in a major product ion derived from the adducted base. The exception was the DB[a,l]P dihydrodiol epoxide adduct of 2,-deoxyadenosine which resulted in major product ions derived from the PAH moiety being detected. Specific detection of mixtures of PAH-adducted 2,-deoxynucleosides was achieved using online column-switching LC/MS/MS in conjunction with selected reaction monitoring (SRM) of the [M+H]+ to [M+H,116]+ transition plus product ions derived from the PAH moiety for improved sensitivity of detection and a comparison was made to detection by constant neutral loss scanning. In conclusion, different PAH DNA adducts were detected by employing SRM [M+H,116]+ transitions or constant neutral loss scanning. However, for improved sensitivity of detection optimised SRM transitions relating to the PAH moiety product ions are required for certain PAH DNA adducts for the development of targeted DNA adductomic methods. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Determination of avoparcin in animal tissues and milk using LC-ESI-MS/MS and tandem-SPE

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 22 2008
Koichi Inoue
Abstract A highly sensitive and selective method using LC-ESI-MS/MS and tandem-SPE was developed to detect trace amounts of avoparcin (AV) antibiotics in animal tissues and milk. Data acquisition using MS/MS was achieved by applying multiple reaction monitoring of the product ions of [M + 3H]3+ and the major product ions of AV-, and -, at m/z 637 , 86/113/130 and m/z 649 , 86/113/130 in ESI(+) mode. The calculated instrumental LODs were 3 ng/mL. The sample preparation was described that the extraction using 5% TFA and the tandem-SPE with an ion-exchange (SAX) and InertSep C18-A cartridge clean-up enable us to determine AV in samples. Ion suppression was decreased by concentration rates of each sample solution. These SPE concentration levels could be used to detect quantities of 5 ppb (milk), 10 ppb (beef), and 25 ppb (chicken muscle and liver). The matrix matching calibration graphs obtained for both AV-, (r >0.996) and -, (r >0.998) from animal tissues and milk were linear over the calibration ranges. AV recovery from samples was higher than 73.3% and the RSD was less than 12.0% (n = 5). [source]


Development of a targeted adductomic method for the determination of polycyclic aromatic hydrocarbon DNA adducts using online column-switching liquid chromatography/tandem mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2010
Rajinder Singh
Human exposure to polycyclic aromatic hydrocarbons (PAHs) from sources such as industrial or urban air pollution, tobacco smoke and cooked food is not confined to a single compound, but instead to mixtures of different PAHs. The interaction of different PAHs may lead to additive, synergistic or antagonistic effects in terms of DNA adduct formation and carcinogenic activity resulting from changes in metabolic activation to reactive intermediates and DNA repair. The development of a targeted DNA adductomic approach using liquid chromatography/tandem mass spectrometry (LC/MS/MS) incorporating software-based peak picking and integration for the assessment of exposure to mixtures of PAHs is described. For method development PAH-modified DNA samples were obtained by reaction of the anti- dihydrodiol epoxide metabolites of benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,l]pyrene (DB[a,l]P) and dibenz[a,h]anthracene with calf thymus DNA in vitro and enzymatically hydrolysed to 2,-deoxynucleosides. Positive LC/electrospray ionisation (ESI)-MS/MS collision-induced dissociation product ion spectra data showed that the majority of adducts displayed a common fragmentation for the neutral loss of 116 u (2,-deoxyribose) resulting in a major product ion derived from the adducted base. The exception was the DB[a,l]P dihydrodiol epoxide adduct of 2,-deoxyadenosine which resulted in major product ions derived from the PAH moiety being detected. Specific detection of mixtures of PAH-adducted 2,-deoxynucleosides was achieved using online column-switching LC/MS/MS in conjunction with selected reaction monitoring (SRM) of the [M+H]+ to [M+H,116]+ transition plus product ions derived from the PAH moiety for improved sensitivity of detection and a comparison was made to detection by constant neutral loss scanning. In conclusion, different PAH DNA adducts were detected by employing SRM [M+H,116]+ transitions or constant neutral loss scanning. However, for improved sensitivity of detection optimised SRM transitions relating to the PAH moiety product ions are required for certain PAH DNA adducts for the development of targeted DNA adductomic methods. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Rapid structural determination of alkaloids in a crude extract of Stemona saxorum by high-performance liquid chromatography/electrospray ionization coupled with tandem mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2009
Shu-Ying Peng
The electrospray ionization (ESI) mass spectrometric behavior of five Stemona alkaloids, stemokerrin, oxystemokerrin, oxystemokerrilactone, oxystemokerrin N -oxide and stemokerrin N -oxide, was studied using an ESI tandem mass technique (MSn). These compounds, isolated from Stemonasaxorum endemic in Vietnam, represent a class of alkaloids containing a pyrido[1,2-a]azepine A,B-ring core with a 1-hydroxypropyl side chain attached to C-4. Their fragmentation pathways were elucidated by ESI-MSn results and the elemental composition of the major product ions was confirmed by accurate mass measurement. In order to rationalize some fragmentation pathways, the relative Gibbs free energies of some product ions were estimated using the B3LYP/6-31+G(d) method. Based on the ESI-MSn results of five reference compounds, a reversed-phase high-performance liquid chromatography with tandem mass spectrometry (RP-HPLC/MSn) method was developed for the characterization of Stemona alkaloids with a pyrido[1,2-a]azepine A,B-ring core from the extract of S. saxorum. A total of 41 components were rapidly identified or tentatively characterized, of which 12 compounds were identified as Stemona alkaloids with a pyrido[1,2-a]azepine A,B-ring core, including four new compounds. This method is convenient and sensitive, especially for minor components in complex natural product extracts. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Studies on azaspiracid biotoxins.

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 24 2002

In this report, the mass spectral analysis of azaspiracid biotoxins is described. Specifically, the collision-induced dissociation (CID) behavior and differences between CID spectra obtained on a triple-quadrupole, a quadrupole time-of-flight, and an ion-trap mass spectrometer are addressed here. The CID spectra obtained on the triple-quadrupole mass spectrometer allowed the classification of the major product ions of the five investigated compounds (AZA 1,5) into five distinct fragment ion groups, according to the backbone cleavage positions. Although the identification of unknown azaspiracids was difficult based on CID alone, the spectra provided sufficient structural information to allow confirmation of known azaspiracids in marine samples. Furthermore, we were able to detect two new azaspiracid analogs (AZA 1b and 6) in our samples and provide a preliminary structural analysis. The proposed dissociation pathways under tandem mass spectrometry (MS/MS) conditions were confirmed by a comparison with accurate mass data from electrospray quadrupole time-of-flight MS/MS experiments. Regular sequential MSn analysis on an ion-trap mass spectrometer was more restricted in comparison to the triple-quadrupole mass spectrometer, because the azaspiracids underwent multiple [M,+,H,,,nH2O]+ (n,=,1,6) losses from the precursor ion under CID. Thus, the structural information obtained from MSn experiments was somewhat limited. To overcome this limitation, we developed a wide-range excitation technique using a 180-u window that provided results comparable to the triple-quadrupole instrument. To demonstrate the potential of the method, we applied it to the analysis of degraded azaspiracids from mussel tissue extracts. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Determination of lamivudine/stavudine/efavirenz in human serum using liquid chromatography/electrospray tandem mass spectrometry with ionization polarity switch

BIOMEDICAL CHROMATOGRAPHY, Issue 6 2002
Bin Fan
A high-performance liquid chromatography/tandem mass spectrometry (LC-MS-MS) method with ionization polarity switch was developed and validated in human serum for the determination of a lamivudine (3TC)/stavudine (d4T)/efavirenz combination HIV therapy. Solid phase extraction (SPE) was used to extract these anti-HIV drugs and internal standard aprobarbital. A gradient mobile phase consisting of acetonitrile and 20,mM ammonium acetate buffer with pH adjusted to 4.5 using glacial acetic acid was utilized to separate these drugs on a hexylsilane column (150,×,2.0,mm i.d.). The total run time between injections was 18,min. The precursor and major product ions of these drugs were monitored on a triple quadrupole mass spectrometer in the multiple reactions monitoring (MRM) mode. Ionization polarity was switched in the middle of the LC run allowing these anti-HIV drugs with different physicochemical properties to be detected simultaneously. The effect of ion suppression from human serum was studied and no interference with the analysis was noted. The method was validated over the range of 1.1,540,ng/mL for 3TC, 12.5,6228,ng/mL for d4T and 1.0,519,ng/mL for efavirenz. The method was shown to be accurate, with intra-day and inter-day accuracy less than 14.0% and precise, with intra-day and inter-day precision less than 13.1%. The extraction recoveries of all analytes were higher than 90%. Copyright © 2002 John Wiley & Sons, Ltd. [source]