Major Myelin Proteins (major + myelin_protein)

Distribution by Scientific Domains

Selected Abstracts

Molecular architecture of myelinated peripheral nerves is supported by calorie restriction with aging

AGING CELL, Issue 2 2009
Sunitha Rangaraju
Summary Peripheral nerves from aged animals exhibit features of degeneration, including marked fiber loss, morphological irregularities in myelinated axons and notable reduction in the expression of myelin proteins. To investigate how protein homeostatic mechanisms change with age within the peripheral nervous system, we isolated Schwann cells from the sciatic nerves of young and old rats. The responsiveness of cells from aged nerves to stress stimuli is weakened, which in part may account for the observed age-associated alterations in glial and axonal proteins in vivo. Although calorie restriction is known to slow the aging process in the central nervous system, its influence on peripheral nerves has not been investigated in detail. To determine if dietary restriction is beneficial for peripheral nerve health and glial function, we studied sciatic nerves from rats of four distinct ages (8, 18, 29 and 38 months) kept on an ad libitum (AL) or a 40% calorie restricted diet. Age-associated reduction in the expression of the major myelin proteins and widening of the nodes of Ranvier are attenuated by the dietary intervention, which is paralleled with the maintenance of a differentiated Schwann cell phenotype. The improvements in nerve architecture with diet restriction, in part, are underlined by sustained expression of protein chaperones and markers of the autophagy,lysosomal pathway. Together, the in vitro and in vivo results suggest that there might be an age-limit by which dietary intervention needs to be initiated to elicit a beneficial response on peripheral nerve health. [source]

Neuronal expression of the proteolipid protein gene in the medulla of the mouse

Martha J. Miller
Abstract The proteolipid protein (PLP) gene (Plp) encodes the major myelin proteins, PLP and DM20. Expression of Plp occurs predominantly in oligodendrocytes, but evidence is accumulating that this gene is also expressed in neurons. In earlier studies, we demonstrated that myelin-deficient (MD) rats, which carry a mutation in the Plp gene, exhibit lethal hypoxic ventilatory depression. Furthermore, we found that, in the MD rat, PLP accumulated in neuronal cell bodies in the medulla oblongata. In the current study, we sought to determine which neurons expressed the Plp gene in the medulla oblongata and whether Plp gene expression changed in neurons with maturation. A transgenic mouse expressing the Plp promoter driving expression of enhanced green fluorescent protein (Plp -EGFP) was used to identify neurons expressing this gene. Plp expression in neurons was confirmed by immunostaining EGFP-positive cells for NeuN and by in situ hybridization for PLP mRNA. The numbers of neurons expressing Plp -EGFP and their distribution increased between P5 and P10 in the medulla. Immunostaining for surface receptors and classes of neurons expressing Plp -EGFP revealed that Plp gene expression in brainstem neurons was restricted to neurons expressing specific ligand-gated channels and biosynthetic enzymes, including glutamatergic NMDA receptors, GABAA receptors, and ChAT in defined areas of the medulla. Plp gene expression was rarely found in interneurons expressing GABA and was never found in AMPA receptor- or tyrosine hydroxylase-expressing neurons. Thus, Plp expression in the mouse caudal medulla was found to be developmentally regulated and restricted to specific groups of neurons. 2009 Wiley-Liss, Inc. [source]

Myelin proteolipid protein, basic protein, the small isoform of myelin-associated glycoprotein, and p42MAPK are associated in the Triton X-100 extract of central nervous system myelin

Dina N. Arvanitis
Abstract To further our understanding of the functions of the major myelin proteins, myelin basic protein (MBP) and proteolipid protein (PLP), and other myelin proteins, such as 2,3,-cyclic nucleotide 3,-phosphodiesterase (CNP) and myelin-associated glycoprotein (MAG), bovine brain myelin was extracted with Triton X-100, and protein complexes in the detergent-soluble fraction were isolated by coimmunoprecipitation and sucrose density gradient sedimentation. MBP, PLP, and the small isoform of MAG (S-MAG) were coimmunoprecipitated from the detergent-soluble fraction by anti-PLP, anti-MBP or anti-MAG monoclonal antibodies. Additionally, a 30 kDa phosphoserine-containing protein and two phosphotyrosine-containing proteins (Mr 30 and 42 kDa) were found in the coimmunoprecipitates. The 42 kDa protein is probably p42MAPK, in that MAPK was shown also to be present in the immunoprecipitated complex. CNP, the small PLP isoform DM20, the large MAG isoform L-MAG, MOG, CD44, MEK, p44MAPK, and actin were not present in the immunoprecipitates, although they were present in the detergent-soluble fraction. Lipid analysis revealed that the PLP,MBP,S-MAG coimmunoprecipitated with some phospholipids and sulfatide but not cholesterol or galactosylceramide. However, the complex had a high density, indicating that the lipid/protein ratio is low, and it was retained on a Sepharose CL6B column, indicating that it is not a large membrane fragment. Given that MAG is localized mainly in the periaxonal region of myelin, where it interacts with axonal ligands, the PLP,MBP,S-MAG complex may come from these regions, where it could participate in dynamic functions in the myelin sheath and myelin,axonal interactions. 2002 Wiley-Liss, Inc. [source]

Schwann cell expression of PLP1 but not DM20 is necessary to prevent neuropathy

Michael E. Shy MD
Proteolipid protein (PLP1) and its alternatively spliced isoform, DM20, are the major myelin proteins in the CNS, but are also expressed in the PNS. The proteins have an identical sequence except for 35 amino acids in PLP1 (the PLP1-specific domain) not present in DM20. Mutations of PLP1/DM20 cause Pelizaeus-Merzbacher Disease (PMD), a leukodystrophy, and in some instances, a peripheral neuropathy. To identify which mutations cause neuropathy, we have evaluated a cohort of patients with PMD and PLP1 mutations for the presence of neuropathy. As shown previously, all patients with PLP1 null mutations had peripheral neuropathy. We also identified 4 new PLP1 point mutations that cause both PMD and peripheral neuropathy, three of which truncate PLP1 expression within the PLP1-specific domain, but do not alter DM20. The fourth, a splicing mutation, alters both PLP1 and DM20, and is probably a null mutation. Six PLP1 point mutations predicted to produce proteins with an intact PLP1-specific domain do not cause peripheral neuropathy. Sixty-one individuals with PLP1 duplications also had normal peripheral nerve function. These data demonstrate that expression of PLP1 but not DMSO is necessary to prevent neuropathy, and suggest that the 35 amino acid PLP1-specific domain plays an important role in normal peripheral nerve function. Ann Neurol 2003 [source]